Chemistry of Difluorocarbene: Synthesis and Conversion of Difluoro(methylene)cyclopropanes

Zhan-Ling Cheng,^[a] Ji-Chang Xiao,^[a] Chao Liu,^[a] and Qing-Yun Chen*^[a]

Keywords: Difluorocarbene / Cyclopropanes / Allenes

Difluoro(methylene)cyclopropanes (F_2MCPs) were prepared directly by difluorocarbene addition to allenes, and the resulting F_2MCPs were converted into a variety of difluoro(methylene)cyclopropane derivatives through Heck reactions and electrophilic substitutions. The ring-opening reactions of F_2MCPs with I_2 are reported and a plausible reaction mechanism is also discussed.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

Methylenecyclopropane derivatives (MCPs) have been well documented as useful synthetic intermediates in organic chemistry over the last decade (Scheme 1),^[1] while the methylenecyclopropane moiety is also found in biologically active natural substances such as MCPG and its metabolite MCPF-CoA.^[2] These compounds' biological activities have also attracted considerable attention.^[3] The introduction of fluorine onto the rings of such methylenecyclopropanes should have profound effects on their biological activities and chemical reactivities, due to the strongly electron-withdrawing effect of fluorine, but the synthesis of these fluorinated analogues - difluoro(methylene)cyclopropanes (F₂MCPs) – is rather difficult. Taguchi has developed two efficient methods for the synthesis of F₂MCPs^[4] - one through the elimination reaction of the selenoxide-derived (difluorocyclopropyl)methanols and the other through the cyclopropyl anion-promoted β -elimination reaction of silvlated difluorocyclopropanes - but multiple reaction steps are needed for both methods. The development of new methods to produce these compounds is therefore of current interest.

Difluorocyclopropane derivatives are usually prepared by difluorocarbene addition to alkenes.^[5] A variety of difluorocarbene precursors have been developed, but these precursors are either inefficient or difficult to obtain:^[5b] difluorodiazirine, Me₃SnCF₃ and PhHgCF₃, for example, require several steps to prepare and involve expensive and/or toxic materials. Hexafluoropropylene oxide (HFPO) is also limited by its availability and its reactions must be carried out in an autoclave, while the most common precursor, ClCF₂CO₂Na, is hygroscopic and requires harsh reaction

Scheme 1. Structures of various methylenecyclopropanes.

conditions to ensure good yields of products. Recently, though, trimethylsilyl fluorosulfonyldifluoroacetate (FO₂SCF₂CO₂SiMe₃, TFDA), which can be easily prepared from considerably less expensive materials, has been reported to be a highly versatile source of difluorocarbene.^[6] Dolbier and our group found that difluorocarbene generated from TFDA can add efficiently and effectively to a variety of alkynes and alkenes under mild conditions.^[7]

Difluoro(methylene)cyclopropane backbones might be directly accessible by difluorocarbene addition to allenic compounds or their equivalents,^[8] and several attempts to explore this possibility have been made.^[9] Dolbier found that a mixture of regioisomers and double cyclopropanation products was formed from the reaction between difluorocarbene and simple allene when PhHgCF₃ was used as the difluorocarbene source,^[9b] while Bargar prepared bioactive F₂MCPs in low yield by treatment of alkyl allenes with difluorocarbene derived from the decomposition of ClCF₂CO₂Na, accompanied by the formation of double cyclopropanation products.^[9c]

As an extension of our studies on difluorocarbene chemistry and our interest in F_2MCP chemistry, we wish to re-

[[]a] Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, 200032 Shanghai, China E-mail: Chenqy@mail.sioc.ac.cn

Results and Discussion

Synthesis of Difluoro(methylene)cyclopropanes

The addition of difluorocarbene to allenes was initially investigated by treatment of phenylpropadiene with TFDA in the presence of NaF in diglyme (DG) at 120 °C. Unfortunately, a mixture of rearranged product, starting material and double cyclopropanation product was formed. It had been reported that the introduction of a sulfonyl group into an allene could improve the regioselectivity in its cycloaddition reaction,^[10] so sulfonyl allenes were then chosen as the substrates. Treatment of **1a** with TFDA under conditions similar to those described above did give the difluoro-(methylene)cyclopropane product **2a** in 22% yield, with the amount of TFDA not significantly affecting the yield of **2a** produced (Table 1, Entries 1 and 2). An improvement was achieved when toluene or xylene was used as the solvent (Table 1, Entries 3 and 4).

Table 1. Conditions for and results of difluorocarbene addition to allenes.

	Me Me	C H TFDA Tos solvent	Me Me Za		
Entry	Solvent	TFDA (equiv.)	Temp. (°C) ^[a]	Yield (%) ^[b]	
1	DG	1.5	120	22	
2	DG	3	120	20	
3	toluene	2	(reflux)	39	
4	xylene	2	120	40	

[a] External temperature. [b] Isolated yields. They are based on 1a used.

A series of sulfonyl allenes were then subjected to the optimal reaction conditions described above. In most cases, a wide range of F_2MCPs were obtained in good yield by this methodology. The substituents on the double bond influenced the reactivity significantly: regioselective difluorocarbene addition proceeded smoothly with the allenes possessing geminal dialkyl substituents (**1a** and **1d–1g**), while the unsubstituted allene **1b** and the monosubstituted allene **1c** did not give the corresponding F_2MCPs . (Table 2, Entries 2 and 3), with the starting materials **1b** and **1c** being recovered; this is probably because of the relatively low electron density in the double bond. The structure of **2f** was further confirmed by single-crystal X-ray diffraction analysis (Figure 1).

Table 2. Difluorocarbene addition to sulfonyl allenes.[a]

Entry	1	\mathbb{R}^1	\mathbb{R}^2	2	Conversion (%)	Yield (%)[b]
1	1a	Me	Me	2a	63	63
2	1b	Η	Η	2b	0	0
3	1c	Η	Me	2c	0	0
4	1d	Et	Me	2d	57	80
5	1e	tBu	Me	2e	57	83
6	1f	–(CH	$H_2)_{5-}$	2f	56	88
7	1g	Ph	Me	2g	60	60

[[]a] Reactions were carried out with 1/TFDA/NaF 1:2:0.1 over 3 h. [b] Isolated yields based on the conversion of 1.

Figure 1. X-ray crystallography for **2f**. Selected bond lengths [Å], bond angles [°] and torsion angles [°]: S(1)-O(1) 1.4251(14), S(1)-C(1) 1.737(2), C(1)-C(2) 1.303(3), C(2)-C(3) 1.446(3), C(1)-H(1) 0.88(2), C(2)-C(4) 1.476(2), C(3)-C(4) 1.491(3); C(1)-C(2)-C(3) 149.30(19), C(3)-C(2)-C(4) 61.35(13), C(2)-C(3)-C(4) 60.34(12); O(1)-S(1)-C(1)-C(2)-3.1(2), S(1)-C(1)-C(2)-C(3) -179.0(3), S(1)-C(1)-C(2)-C(4) -3.8(5), C(1)-C(2)-C(4) 177.2(4), C(1)-C(2)-C(4)-C(4) -C(4)-C(4) -C(4)-C(4).

While MCPs have been applied in a wide variety of synthetic transformations, F_2MCPs have so far been less well explored, due to their poor accessibility. With the above difluoro(methylene)cyclopropane derivatives to hand, we next investigated their conversion into diversely functionalized derivatives.

Heck Reactions between F₂MCP and Aryl Iodides

Initial investigations into Heck reactions were made with F_2MCP **2a** and *p*-iodoanisole as the substrates. Of the catalysts, bases, solvents and temperatures screened, the combination of Pd(PPh₃)₄ and Ag₂CO₃ in DMF at 120 °C produced the best results for this transformation, with the corresponding coupling product **4aa** being obtained in 74% yield (Table 3). For comparison, no ring-opening products were detected with their nonfluorinated analogues, despite the high conformational strain of **2a**.^[11]

Table 3. Conditions and results of Heck reactions.[a]

[a] Reactions were carried out in the presence of palladium catalyst (10 mol%). [b] Isolated yields. [c] The ratio of Ag_2CO_3 and K_2CO_3 is 0.05:4.

We then studied the scope of the reaction by allowing the $F_2MCPs 2$ to react with a variety of aryl iodides 3 under the optimal reaction conditions described above; the results are summarized in Table 4. No desired product was obtained in the case of $F_2MCP 2g$ (Table 4, Entry 10), which might be a result of the presence of the phenyl group at the allylic position. Neither was any corresponding product was formed in the case of 1-iodo-4-nitrobenzene (3f), which contains a strongly electron-withdrawing group on the benzene ring, (Table 4, Entry 6). In other cases the reactions proceeded smoothly to give the arylated $F_2MCPs 4$ in mod-

Table 4. Heck reactions between of F₂MCPs 2 and aryl iodides.^[a]

2a : R ¹ = Me, R ² = Me	3a : Ar = 4-MeOPh
2d: R ¹ = Et, R ² = Me	3b : Ar = 4-MePh
2e : R ¹ = <i>t</i> Bu, R ² = Me	3c : Ar = Ph
2f : R ¹ + R ² = -(CH ₂) ₅ -	3d : Ar = 4-CIPh
2g: R ¹ = Ph, R ² = Me	3e : Ar = 4-MeO ₂ CPh
-	3f: Ar = 4-NO ₂ Ph

Entry	2	ArI	4	Yield (%) ^[b]
1	2a	3a	4aa	74
2	2a	3 b	4ab	60
3	2a	3c	4ac	55
4	2a	3d	4ad	37
5	2a	3e	4ae	25
6	2a	3f	4af	0
7	2d	3a	4da	57
8	2e	3a	4ea	60
9	2f	3a	4fa	66
10	2g	3a	4ga	0

[a] $2/3/Pd(PPh_3)_4/Ag_2CO_3 = 1:1.1:0.1:4.0$. [b] Isolated yields.

erate to good yields. The presence of a bulky group such as *tert*-butyl on the cyclopropane ring had no effect on the yield of **4** (Table 4, Entry 8).

Reactions between F₂MCPs and Electrophiles

Since the presence of a sulfone group can stabilize the adjacent carbon anion, vinyllithium intermediates generated by direct lithiation of vinyl sulfones have been used in many practical organic syntheses.^[12] Application of this method to $F_2MCPs 2$ was also successful; the results are given in Table 5. Treatment of $F_2MCP 2a$ with *n*BuLi in THF at -78 °C converted **2a** into the lithiated intermediate I, while subsequent treatment (after workup) with benzalde-hyde resulted in the formation of **5a** in 75% yield (Table 5, Entry 1).

Similarly to the situation in the Heck reactions, none of the desired product was obtained when 2g, containing a phenyl substituent on the cyclopropane ring, was used as the starting material (Table 5, Entry 5), but all the other F_2MCPs gave modest to good yields of the desired products. The matter of whether aromatic aldehydes or aliphatic aldehydes were being used had some effect on the yield of 5: decreased yields of 5 were obtained when aliphatic aldehydes such as propanal were used, for example (Table 5, Entry 6). As well as aldehydes, other electrophiles such as methyl iodide and iodine were also applicable in this conversion (Table 5, Entries 7 and 8). It should be noted that the iodinated product **5h**, an iodoalkene derivative, might be suitable for further transformations.

CuI-Catalyzed Ring-Opening Reactions between F_2MCPs and Iodine

There is a growing interest in ring-opening of MCPs: Huang and co-workers recently reported CuI/I₂-catalyzed ringopening reactions of MCPs with I_{2} ,^[13] whilst Shi's group

FULL PAPER

Table 5. Reactions between 2 and electrophiles.^[a]

2a: R¹ = Me, R² = Me; **2d**: R¹ = Et, R² = Me; **2e**: R¹ = *t*Bu, R² = Me; **2f**: R¹ + R² = -(CH₂)₅-; **2g**: R¹ = Ph, R² = Me

Entry	2	Electrophile	5	Yield (%) ^[b]
1	2a	PhCHO	5a [E = CH(OH)Ph]	75
2	2d	PhCHO	5b $[E = CH(OH)Ph]$	55
3	2e	PhCHO	5c [E = CH(OH)Ph]	70
4	2f	PhCHO	5d [E = CH(OH)Ph]	61
5	2g	PhCHO	5e [E = CH(OH)Ph]	0
6	2a	nPrCHO	5f $[E = CH(OH)nPr]$	37
7	2a	MeI	5g (E = Me)	60
8	2a	I ₂	5h (E = I)	57

[a] Reactions were carried out with $2/E^+ = 1:1.2$. [b] Isolated yields.

found that this reaction can also occur in the absence of CuI.^[14] In the next step of our research into F_2MCPs , we investigated their ring-opening reactions. It was found that the reaction between **2a** and I₂ in the presence of CuI readily produced **6a** in 93% yield (Table 6, Entry 1). Other F_2MCPs were studied similarly, and the results are listed in Table 6.

Table 6. Ring-opening reactions between 2 and I2.^[a]

[a] Reactions were carried out with $2/CuI/I_2 = 1:0.05:3$. [b] Isolated yields.

As illustrated in Table 6, the reactions were significantly affected by the substituents on the cyclopropane rings. No reactions occurred, even with prolonged reaction times, with F_2MCPs bearing bulky or aromatic substituents on their cyclopropane rings (Table 6, Entries 3 and 5), while with other F_2MCPs the corresponding ring-opening products were obtained in good to excellent yields.

Ito has proposed a metallocyclic intermediate mechanism to explain the selective distal or proximal C–C bond cleavage of MCPs through Pd- and Pt-catalysed silaboration,^[15] while Huang has suggested a copper-containing cyclic intermediate mechanism for CuX₂-mediated ringopening reactions of MCPs.^[13] In view of the similarity of MCPs and F₂MCPs, a plausible mechanism for this reaction is shown in Scheme 2. An equilibrium between CuI

and CuI₂ would first be established under the reaction con-

ditions, while the oxidative addition of CuI₂ to the distal

C-C bond of F₂MCPs would then result in the formation

of intermediate A, followed by reductive elimination to give

B. The final product 6 would be formed after oxidative

Scheme 2. Proposed mechanism for CuI-promoted ring-opening reactions of F_2MCPs .

Conclusions

In summary, we have developed a convenient and efficient method for the synthesis of difluoro(methylene)cyclopropanes by addition of difluorocarbene to allenes. Subsequent Heck reactions or electrophilic reactions of the F_2MCPs were investigated. The procedures described here should be adaptable to the synthesis of other difluoro(methylene)cyclopropane derivatives. The ring-opening reactions of F_2MCPs were also studied, providing a novel route to difluoromethylated derivatives. Other synthetically useful transformations of F_2MCPs are under continuing investigation in our laboratory.

Experimental Section

General: ¹H NMR spectra were recorded on a Bruker AM 300 (300 MHz) spectrometer with TMS as an internal standard (negative for upfield). ¹⁹F NMR spectra were recorded on a Bruker AM 300 (282 MHz) with CFCl₃ as an external standard (negative for upfield). The solvent for NMR measurement was CDCl₃ or CD₃COCD₃, which were purchased from Cambridge Isotope Laboratories, Aldrich or Acros. MS and HRMS were recorded on a Hewlett-Packard HP-5989A spectrometer and a Finnigan MAT-8483 mass spectrometer. Elementary analyses were obtained on a Perkin-Elmer 2400 Series II Elemental Analyzer. Infrared spectra were measured with a Perkin-Elmer 983 spectrometer. TLC analysis were performed on silica gel plates, column chromatography over silica gel (mesh 300-400), both obtained from Qingdao Ocean Chemicals. Diglyme, THF and CH₃CN were purified by standard methods. FSO₂CF₂COOSiMe₃ (TFDA) and sulfonyl allenes were prepared as described in the literature.^[7,16] nBuLi and aryl iodides were used as commercially available.

Typical Procedure for the Addition of Difluorocarbene to Allenes: Compound 1f (273 mg, 1.04 mmol), NaF (4 mg, 10 mol%) and xylene (2 mL) were placed under N₂ in a Schlenk tube fitted with a magnetic stirring bar and a pressure-equalizing dropping funnel. The mixture was heated to 120 °C (oil bath), TFDA (530 mg, 2.0 equiv.) was added dropwise with stirring over a period of about 40 min, and the mixture was then stirred for another 2.5 h. at this temperature. After having cooled to room temperature, the reaction mixture was directly purified by flash chromatography on a silica gel column. Compound 2f (161 mg, 88%) was obtained as a white solid, while 1f (120 mg, conversion 56%) was recovered.

1,1-Difluoro-2-[(tolyI-4-sulfonyl)methylidene]spiro[2.5]octane (2f): Solid, yield 161 mg (88%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.34–1.44 (m, 3 H), 1.68–1.90 (m, 5 H), 1.96–2.08 (m, 2 H), 2.46 (s, 3 H), 6.95 (s, 1 H), 7.36 (d, *J* = 9.0 Hz, 2 H), 7.76 (d, *J* = 8.4 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -140.4 (s, 2 F) ppm. IR (film): $\tilde{\nu}$ = 3050, 2939, 2862, 1746, 1598, 1472, 1344, 1321, 1169, 1147, 1115 cm⁻¹. MS (EI): *m/z*: 312 [M]⁺ (15.84), 91 (100). C₁₆H₁₈F₂O₂S (312.1): C 61.52, H 5.81; found: C 61.63, H 5.77.

X-ray Crystallographic Data for 2f: Crystal system: monoclinic, space group: *P*21/*n*, unit cell dimensions: a = 13.0719(18) Å, b = 5.9925(8) Å, c = 19.815(3) Å, $a = 90^{\circ}$, $\beta = 99.478(3)^{\circ}$, $\gamma = 90^{\circ}$; Z = 4, F(000) = 656, R1 = 0.0734, $wR_2 = 0.1309$. CCDC-289229 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

1-{[(2,2-Difluoro-3,3-dimethylcyclopropylidene)methyljsulfonyl}-4methylbenzene (2a): Solid, yield 108 mg (63 %). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.45 (t, *J* = 1.5 Hz, 6 H), 2.46 (s, 3 H), 7.00 (s, 1 H), 7.37 (d, *J* = 8.1 Hz, 2 H), 7.80 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -138.7 (s, 2 F) ppm. IR (film): \tilde{v} = 2982, 1744, 1594, 1490, 1461, 1394, 1342, 1322, 1298, 1239, 1210, 1154 cm⁻¹. MS (EI): *m/z*: 272 (100) [M⁺]. C₁₃H₁₄F₂O₂S (272.1): C 57.34, H 5.18; found: C 57.37, H 5.17.

1-{[(2-Ethyl-3,3-difluoro-2-methylcyclopropylidene)methyl]sulfonyl}-4-methylbenzene (2d): Solid, yield 130 mg (80 %). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.09 (t, *J* = 7.2 Hz, 3 H), 1.44 (s, 3 H), 1.61–1.71 (m, 1 H), 1.99–2.09 (m, 1 H), 2.47 (s, 3 H), 6.99 (s, 1 H), 7.39 (d, *J* = 7.2 Hz, 2 H), 7.78 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -136.7 (d, *J* = 181.9 Hz, 1 F), -141.2 (d, *J* = 184.4 Hz, 1 F) ppm. IR (film): \tilde{v} = 2984, 2939, 2883, 1737, 1596, 1462, 1454, 1380, 1357, 1320, 1271, 1152 cm⁻¹. MS (EI): m/z: 286 [M]⁺ (8.17), 65 (100). $C_{14}H_{16}F_2O_2S$ (286.1): C 58.72, H 5.63; found: C 58.91, H 5.56.

1-{[(2-*tert***-Butyl-3,3-difluoro-2-methylcyclopropylidene)methyl]sulfonyl}-4-methylbenzene (2e):** Solid, yield 149 mg (83%). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.15$ (s, 9 H), 1.40 (t, J =2.1 Hz, 3 H), 2.46 (s, 3 H), 7.08 (s, 1 H), 7.38 (d, J = 8.4 Hz, 2 H), 7.80 (d, J = 8.7 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): $\delta = -131.6$ (d, J = 188.1 Hz, 1 F), -140.0 (d, J = 188.1 Hz, 1 F) ppm. IR (film): $\tilde{v} = 2964$, 2927, 1839, 1735, 1598, 1468, 1381, 1325, 1239, 1153 cm⁻¹. MS (EI): m/z: 315 [M + 1]⁺ (28.76), 139 (100). HRMS (MALDI) calcd. for C₁₆H₂₀F₂O₂SNa⁺: 337.1056; found: 337.1044.

1-{[(2,2-Difluoro-3-methyl-3-phenylcyclopropylidene)methyl]sulfonyl}-4-methylbenzene (2g): Solid, yield 120 mg (60%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 2.08 (t, *J* = 3.3 Hz, 3 H), 2.44 (s, 3 H), 4.17 (s, 1 H), 7.17 (d, *J* = 6.9 Hz, 2 H), 7.24–7.42 (m, 5 H), 7.79 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -122.3 (s, 2 F) ppm. IR (film): \tilde{v} = 2971, 2918, 1641, 1615, 1597, 1462, 1450, 1386, 1361, 1317, 1259, 1137 cm⁻¹. MS (EI): *m/z*: 334 [M]⁺ (1.19), 179 (100). C₁₆H₁₈F₂O₂S (312.1): C 64.65, H 4.82; found: C 64.70, H 4.96.

Typical Procedure for Heck Reactions between Compounds 2 and Aryl Iodides: Compounds 2a (39 mg) and 3a (37 mg, 1.1 equiv.), Ag₂CO₃ (170 mg, 4.0 equiv.) and DMF (3 mL) were placed under N₂ in a Schlenk tube containing a magnetic stirring bar. The mixture was cooled to -78 °C with a dry ice/alcohol bath and degassed three times. Pd(PPh₃)₄ (17 mg, 10 mol-%) was then added, and the mixture was heated at 120 °C (oil bath) and stirred for 24 h. The reaction mixture was allowed to cool to room temperature and filtered, the solid was washed with ethyl acetate (10 mL), and the combined filtrate was then washed with water and brine and dried with MgSO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on a silica gel column to provide **4aa** (40 mg, 74%) as a white solid.

1-{[(2,2-Difluoro-3,3-dimethylcyclopropylidene)(4-methoxyphenyl)methyl]sulfonyl}-4-methylbenzene (4aa): Solid, yield 40 mg (74%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.54 (s, 3 H), 1.59 (s, 3 H), 2.36 (s, 3 H), 3.79 (s, 3 H), 6.82 (d, *J* = 9.0 Hz, 2 H), 7.20 (d, *J* = 7.8 Hz, 2 H), 7.46 (d, *J* = 9.0 Hz, 2 H), 7.58 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -136.9 (s, 2 F) ppm. IR (film): \tilde{v} = 2920, 1716, 1604, 1513, 1463, 1389, 1345, 1324, 1304, 1257, 1183, 1151 cm⁻¹. MS (EI): *m/z*: 378 [M]⁺ (4.12), 135 (100). C₂₀H₂₀F₂O₃S (378.1): C 63.48, H 5.33; found: C 63.57, H 5.12.

1-{{(2,2-Difluoro-3,3-dimethylcyclopropylidene)(tolyl)methyl}sulfonyl}-4-methylbenzene (4ab): Solid, yield 108 mg (60%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 2.32 (s, 3 H), 2.36 (s, 3 H), 7.10 (d, *J* = 8.4 Hz, 2 H), 7.20 (d, *J* = 8.4 Hz, 2 H), 7.38 (d, *J* = 8.4 Hz, 2 H), 7.58 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -137.02 (s, 2 F) ppm. IR (film): \tilde{v} = 2977, 2931, 1715, 1597, 1512, 1458, 1389, 1347, 1319, 1303, 1147 cm⁻¹. MS (EI): *m/z*: 362 [M]⁺ (6.93), 119 (100). C₂₀H₂₀F₂O₂S (362.1): C 66.28, H 5.56; found: C 66.76, H 5.97.

1-{[(2,2-Difluoro-3,3-dimethylcyclopropylidene)(phenyl)methyl]sulfonyl}-4-methylbenzene (4ac): Solid, yield 191 mg (55%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 2.36 (s, 3 H), 7.22 (d, *J* = 8.1 Hz, 2 H), 7.30–7.37 (m, 3 H), 7.47–7.52 (m, 2 H), 7.59 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = –137.0 (s, 2 F) ppm. IR (film): \tilde{v} = 2964, 2926, 2854, 1656, 1456, 1349, 1300, 1262, 1151, 1090 cm⁻¹. MS (EI): *m*/*z*: 348 [M]⁺ (15.25), 105 (100). C₁₉H₁₈F₂O₂S (348.1): C 65.50, H 5.21; found: C 65.81, H 5.28. **1-{[(4-Chlorophenyl)(2,2-difluoro-3,3-dimethylcyclopropylidene)methyl]sulfonyl}-4-methylbenzene (4ad):** Solid, yield 141 mg (37%). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.56$ (t, J = 1.5 Hz, 6 H), 2.38 (s, 3 H), 7.22 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.43 (d, J = 8.4 Hz, 2 H), 7.56 (d, J = 7.8 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): $\delta = -136.97$ (s, 2 F) ppm. IR (film): $\tilde{v} =$ 2930, 1722, 1594, 1491, 1466, 1388, 1348, 1323, 1203, 1154, 1088 cm⁻¹. MS (EI): m/z: 382 [M]⁺ (2.94), 139 (100). C₁₉H₁₇ClF₂O₂S (382.1): C 59.61, H 4.48; found: C 59.89, H 4.66.

Methyl 4-[(2,2-Difluoro-3,3-dimethylcyclopropylidene)(tolyl-4sulfonyl)methyl]benzoate (4ae): Solid, yield 102 mg (25%). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.57$ (t, J = 2.1 Hz, 6 H), 2.36 (s, 3 H), 3.91 (s, 3 H), 7.21 (d, J = 7.8 Hz, 2 H), 7.55 (d, J = 1.8 Hz, 2 H), 7.57 (d, J = 2.1 Hz, 2 H), 7.97 (d, J = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): $\delta = -136.9$ (s, 2 F) ppm. IR (film): $\tilde{v} = 2923$, 2851, 1724, 1608, 1597, 1459, 1426, 1390, 1347, 1326, 1316, 1276, 1157, 1142 cm⁻¹. MS (EI): *m/z*: 406 [M]⁺ (4.62), 163 (100). HRMS (EI) calcd. for C₂₁H₂₀F₂O₄S: 406.1046: found: 406.1050.

1-{[(2-Ethyl-3,3-difluoro-2-methylcyclopropylidene)(methoxyphenyl)methyl]sulfonyl}-4-methylbenzene (4da): Solid, yield 223 mg (57%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.14 (t, *J* = 7.2 Hz, 3 H), 1.55 (t, *J* = 1.8 Hz, 3 H), 1.69–1.82 (m, 1 H), 2.14–2.25 (m, 1 H), 2.38 (s, 3 H), 3.81 (s, 3 H), 6.84 (d, *J* = 8.7 Hz, 2 H), 7.22 (d, *J* = 8.7 Hz, 2 H), 7.47 (d, *J* = 8.7 Hz, 2 H), 7.59 (d, *J* = 8.7 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -134.7 (d, *J* = 183.6 Hz, 1 F), -139.4 (d, *J* = 182.2 Hz, 1 F) ppm. IR (film): \tilde{v} = 2926, 1715, 1605, 1512, 1459, 1359, 1322, 1256, 1178, 1150 cm⁻¹. MS (EI): *m/z*: 392 [M]⁺ (8.72), 135 (100). HRMS (MALDI) calcd. for C₂₁H₂₂O₃F₂SNa⁺: 415.1158; found: 415.1150.

1-{[(2-*tert***-Butyl-3,3-difluoro-2-methylcyclopropylidene)(methoxyphenyl)methyl]sulfonyl}-4-methylbenzene (4ea):** Liquid, yield 263 mg (60%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.21 (s, 9 H), 1.52 (t, *J* = 2.1 Hz, 3 H), 2.35 (s, 3 H), 6.81 (d, *J* = 9.0 Hz, 2 H), 7.20 (d, *J* = 8.4 Hz, 2 H), 7.38 (d, *J* = 9 Hz, 2 H), 7.54 (d, *J* = 8.4 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -129.1 (d, *J* = 184.4 Hz, 1 F), -138.5 (d, *J* = 186.1 Hz, 1 F) ppm. IR (film): $\tilde{\nu}$ = 2964, 2920, 1715, 1606, 1575, 1512, 1464, 1337, 1324, 1256, 1151 cm⁻¹. MS (ESI): *m/z*: 438.2 [M + NH₄]⁺. HRMS (MALDI) calcd. for C₂₃H₂₇F₂O₃S⁺: 421.1635; found: 421.1643.

1,1-Difluoro-2-[(4-methoxyphenyl)(tolyl-4-sulfonyl)methylidene]spiro[2.5]octane (4fa): Solid, yield 138 mg (66 %). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.38–1.49 (m, 3 H), 1.76–1.93 (m, 5 H), 2.12–2.23 (m, 2 H), 2.36 (s, 3 H), 6.82 (d, *J* = 9.0 Hz, 2 H), 7.20 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 8.7 Hz, 2 H), 7.57 (d, *J* = 8.4 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = –138.4 (s, 2 F) ppm. IR (film): \tilde{v} = 2934, 1713, 1607, 1577, 1513, 1456, 1375, 1324, 1305, 1260, 1162, 1148, 1112 cm⁻¹. MS (ESI): *m/z*: 436.2 [M + NH₄]⁺. C₂₃H₂₄F₂O₃S (418.1): C 66.01, H 5.78; found: C 66.00, H 5.88.

Typical Procedure for Reactions between Compounds 2 and Electrophiles: Compound 2a (54 mg, 0.2 mmol) and THF (3 mL) were placed under N₂ in a Schlenk tube containing a magnetic stirring bar, the mixture was cooled to -78 °C with a dry ice/alcohol bath, and *n*BuLi (0.15 mL, 1.6 M, 1.1 equiv.) was added. After the mixture had been stirred for 30 min at this temperature, benzaldehyde (22 mg, 1.2 equiv.) was added, and the reaction mixture was stirred for a further hour at the same temperature. The cool bath was removed, saturated aq. NH₄Cl (5 mL) was added, and the reaction mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine and dried with MgSO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on a silica gel column to provide 5a (50 mg, 75%) as a white solid.

2-(2,2-Difluoro-3,3-dimethylcyclopropylidene)-1-phenyl-2-(tolyl-4-sulfonyl)ethanol (5a): Solid, yield 50 mg (75%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.43 (d, *J* = 8.7 Hz, 6 H), 2.41 (s, 3 H), 2.87 (d, *J* = 4.5 Hz, 1 H), 5.58 (s, 1 H), 7.13–7.24 (m, 7 H), 7.57 (d, *J* = 7.8 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -135.2 (d, *J* = 181 Hz, 1 F), -137.1 (d, *J* = 181 Hz, 1 F) ppm. IR (film): \tilde{v} = 3502, 2937, 1737, 1569, 1494, 1463, 1452, 1392, 1349, 1315, 1221, 1146, 1088 cm⁻¹. MS (EI): *m/z*: 378 [M]⁺ (1.09), 77(100). C₂₀H₂₀F₂O₃S (378.1): C 63.48, H 5.33; found: C 63.48, H 5.17.

2-(2-Ethyl-3,3-difluoro-2-methylcyclopropylidene)-1-phenyl-2-(tolyl-4-sulfonyl)ethanol (5b): Liquid, yield 216 mg (55%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.02–1.09 (m, 3 H), 1.40 (d, *J* = 9.3 Hz, 3 H), 1.56–1.69 (m, 1 H), 1.99–2.09 (m, 1 H), 2.41 (s, 3 H), 2.88 (dd, *J* = 1.2 Hz, 12.6 Hz, 1 H), 5.58 (br., 1 H), 7.12–7.27 (m, 7 H), 7.56 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = –132.1 (d, *J* = 183.6 Hz, 0.25 F), –134.9 (d, *J* = 184 Hz, 0.25 F), –137.7 (d, *J* = 181.6 Hz, 0.25 F), –139.5 (d, *J* = 185.8 Hz, 0.25 F) ppm. IR (film): \tilde{v} = 3497, 2975, 2939, 1598, 1495, 1456, 1378, 1361, 1319, 1304, 1199, 1151, 1090 cm⁻¹. MS (ESI): *m/z*: 409.7 [M + NH₄]⁺. HRMS (MALDI) calcd. for C₂₁H₂₂F₂O₃SNa⁺: 415.1154; found: 415.1150.

2-(2-*tert***-Butyl-3,3-difluoro-2-methylcyclopropylidene)-1-phenyl-2-**(**tolyl-4-sulfonyl)ethanol (5c):** Liquid, yield 147 mg (70%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.15 (d, *J* = 8.4 Hz, 9 H), 1.35 (d, *J* = 15 Hz, 3 H), 2.40 (d, *J* = 5.4 Hz, 3 H), 2.82 (dd, *J* = 5.4, 62.7 Hz, 2 H), 5.59 (d, *J* = 3.3 Hz, 1 H), 7.07 (m, 1 H), 7.15–7.25 (m, 6 H), 7.35 (d, *J* = 5.4 Hz, 1 H), 7.61 (d, *J* = 7.8 Hz, 1 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -126.5 (d, *J* = 186 Hz, 0.25 F), -129 (d, *J* = 187 Hz, 0.25 F), -135.7 (d, *J* = 188 Hz, 0.25 F), -138.2 (d, *J* = 187 Hz, 0.25F) ppm. IR (film): \tilde{v} = 3500, 2900, 1600, 1450, 1320, 1232, 1149, 1087 cm⁻¹. MS (ESI): *m/z*: 438.2 [M + NH₄]⁺. HRMS (MALDI) calcd. for C₂₃H₂₆F₂O₃SNa⁺: 443.1469; found: 443.1463.

2-(2,2-Difluorospiro]2.5]octylidene)-1-phenyl-2-(tolyl-4-sulfonyl)-ethanol (5d): Solid, yield 127 mg (61%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 0.85 (t, *J* = 5.7 Hz, 3 H), 1.19–1.48 (m, 9 H), 1.60–1.70 (m, 2 H), 2.46 (s, 3 H), 4.38 (br., 1 H), 7.37 (d, *J* = 8.4 Hz, 2 H), 7.77 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -134.8 (m, 0.2 F), -135.5 (m, 0.8 F), -136.1 (m, 0.8 F), -136.7 (m, 0.2F) ppm. IR (film): \tilde{v} = 3491, 2964, 2932, 2873, 1597, 1462, 1392, 1351, 1315, 1305, 1224, 1145, 1086 cm⁻¹. MS (ESI): *m/z*: 436.1 [M + NH₄]⁺. C₂₃H₂₄F₂O₃S (436.1): C 66.01, H 5.78; found: C 66.30, H 5.58.

1-(2,2-Difluoro-3,3-dimethylcyclopropylidene)-1-(tolyl-4-sulfonyl)pentan-2-ol (5f): Solid, yield 210 mg (51%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 0.85 (t, *J* = 7.2 Hz, 3 H), 1.17–1.39 (m, 2 H), 1.43 (s, 6 H), 1.57–1.72 (m, 2 H), 2.46 (s, 3 H), 4.38 (br., 1 H), 7.37 (d, *J* = 8.1 Hz, 2 H), 7.77 (d, *J* = 8.7 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -134.8 (m, 0.2 F), -135.5 (m, 0.8 F), -136.1 (m, 0.8 F), -136.7 (m, 0.2F) ppm. IR (film): \tilde{v} = 3491, 2964, 2932, 2873, 1597, 1462, 1392, 1351, 1315, 1305, 1224, 1145 cm⁻¹. MS (ESI): *m/z*: 362.1 [M + NH₄]⁺. C₁₇H₂₂F₂O₃S (344.1): C 59.30, H 6.40; found: C 59.27, H 6.62.

1-[1-(2,2-Difluoro-3,3-dimethylcyclopropylidene)ethylsulfonyl]-4methylbenzene (5g): Solid, yield 171 mg (60%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.44 (t, *J* = 1.8 Hz, 6 H), 2.06 (s, 3 H), 2.46 (s, 3 H), 7.37 (d, *J* = 8.4 Hz, 2 H), 7.75 (d, *J* = 8.4 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -139.9 (s, 2 F) ppm. IR (film): $\tilde{v} = 2979$, 2930, 2874, 1752, 1597, 1461, 1446, 1392, 1351, 1319, 1227, 1161 cm⁻¹. MS (EI): *m*/*z*: 286 [M]⁺ (7.25), 65 (100). HRMS (MALDI) calcd. for C₁₄H₁₆F₂O₂SNa⁺: 309.0744; found: 309.0731.

1-[(2,2-Difluoro-3,3-dimethylcyclopropylidene)iodomethylsulfonyl]-4methylbenzene (5h): Solid, yield 147 mg (37%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.48 (t, *J* = 1.5 Hz, 6 H), 2.48 (s, 3 H), 7.38 (d, *J* = 8.1 Hz, 2 H), 7.83 (d, *J* = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -141.8 (s, 2 F) ppm. IR (film): \tilde{v} = 2950, 1765, 1700, 1593, 1460, 1446, 1390, 1338, 1321, 1209, 1159, 1149, 879 cm⁻¹. MS (ESI): *m/z*: 399.0 [M + H⁺]. C₁₃H₁₃F₂IO₂S(398.0): C 39.21, H 3.29; found: C 39.36, H 3.47.

Typical Procedure for Ring-Opening Reactions between Compounds 2 and I₂: CuI (3 mg, 10 mol-%) was added under N₂ to a solution of 2a (20 mg) and I₂ (75 mg, 4.0 equiv.) in CH₃CN (5 mL). The mixture was heated to reflux with stirring and monitored by ¹⁹F NMR spectroscopy. After completion, aq. Na₂S₂O₃ was added and the reaction mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine and dried with MgSO₄ and, after removal of solvent under reduced pressure, the residue was purified by flash chromatography on a silica gel column to provide 6a (36 mg, 93%) as a pale yellow solid.

1-{[2-(Difluoroiodomethyl)-3-iodo-3-methylbut-1-enyl]sulfonyl}-4-methylbenzene (6a): Solid, yield 36 mg (93%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 2.10 (s, 3 H), 2.48 (s, 3 H), 7.39 (d, *J* = 8.4 Hz, 2 H), 7.70 (s, 1 H), 7.91 (d, *J* = 8.4 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -88.2 (s, 2 F) ppm. IR (film): \tilde{v} = 2924, 2852, 1596, 1580, 1494, 1458, 1391, 1317, 1305, 1203, 1155 cm⁻¹. MS (ESI): *m*/*z*: 544.0 [M + NH₄]⁺. HRMS (MALDI) calcd. for C₁₃H₁₄F₂I₂O₂SNa⁺: 548.8681; found: 548.8664.

1-{[2-(Difluoroiodomethyl)-3-iodo-3-methylpent-1-enyl]sulfonyl}-4-methylbenzene (6d): Liquid, yield 216 mg (80%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 10.9 (t, *J* = 6.9 Hz, 3 H), 1.44–1.53 (m, 1 H), 2.00 (m, 4 H), 2.47 (s, 3 H), 7.38 (d, *J* = 8.4 Hz, 2 H), 7.73 (s, 1 H), 7.90 (d, *J* = 8.4 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -85.3 (s, 2 F) ppm. IR (film): \tilde{v} = 2957, 2923, 2852, 1736, 1596, 1581, 1455, 1385, 1328, 1305, 1247, 1199, 1152, 1086 cm⁻¹. MS (MALDI) *m/z*: 541 [M + H⁺]. HRMS (MALDI) calcd. for C₁₄H₁₆F₂I₂O₂SNa⁺: 562.8820; found: 562.8821.

1-{[3,3-Difluoro-3-iodo-2-(1-iodocyclohexyl)prop-1-enyl]sulfonyl}-4methylbenzene (6f): Solid, yield 135 mg (95%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.10–1.25 (m, 1 H), 1.37–1.50 (m, 2 H), 1.65–1.81 (m, 5 H), 2.06–2.14 (m, 2 H), 2.49 (s, 3 H), 7.40 (d, J = 7.8 Hz, 2 H), 7.80 (s, 1 H), 7.94 (d, J = 8.1 Hz, 2 H) ppm. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -88.8 (s, 2 F) ppm. IR (film): \tilde{v} = 3017, 2947, 2926, 2860, 2839, 1593, 1579, 1446, 1428, 1338, 1318, 1304, 1251, 1217, 1156, 1143, 1084 cm⁻¹. C₁₆H₁₈F₂I₂O₂S (565.9): C 33.94, H 3.20; found: C 34.23, H 3.19.

Acknowledgments

We thank the Natural Science Foundation of China (Nos. 20272026, 20032010, 20532040) for supporting this work.

For recent reviews, see: a) I. Nakamura, Y. Yamamoto, *Adv. Synth. Catal.* 2002, *344*, 111–129; b) A. Brandi, S. Cicchi, F. M. Cordero, A. Goti, *Chem. Rev.* 2003, *103*, 1213–1270.

- [2] a) M.-T. Lai, E. Oh, Y. Shin, H.-W. Liu, J. Org. Chem. 1992, 57, 2471–2476; b) S. Dakoji, D. F. Becker, M. T. Stankovich, H.-W. Liu, J. Am. Chem. Soc. 1996, 118, 10971–10979; c) D. Li, H.-Q. Zhou, S. Dakoji, I. Shin, E. Oh, H.-W. Liu, J. Am. Chem. Soc. 1998, 120, 2008–2017; d) J. E. Baldwin, W. C. Widdison, J. Am. Chem. Soc. 1992, 114, 2245–2251; e) J. E. Baldwin, R. M. Adlington, D. Bebbington, A. T. Russell, Tetrahedron 1994, 50, 12015–12028.
- [3] a) J. Salaun, M. S. Baird, *Curr. Med. Chem.* 1995, 2, 511–542;
 b) S. Ramaswamy, K. Prasad, O. Repic, *J. Org. Chem.* 1992, 57, 6344–6347;
 c) T. Nemoto, M. Ojika, Y. Sakagami, *Tetrahedron Lett.* 1997, 38, 5667–5670.
- [4] a) T. Taguchi, M. Kurishita, A. Shibuya, K. Aso, *Tetrahedron* 1997, 53, 9497–9508; b) A. Shibuya, M. Okada, Y. Nakamura, M. Kibashi, H. Horikawa, T. Taguchi, *Tetrahedron* 1999, 55, 10325–10340.
- [5] a) Chemistry of Organic Fluorine Compounds II (Eds.: M. Hudlický, A. E. Pavlath), American Chemical Society: Washington, DC, **1995**; b) D. L. S. Brahams, W. P. Dailey, Chem. Rev. **1996**, 96, 1585–1632; c) M. R. C. Gerstenberger, A. Haas, Angew. Chem. Int. Ed. Engl. **1981**, 20, 647–667; d) M. J. Tozer, T. F. Herpin, Tetrahedron **1996**, 26, 8619–8683.
- [6] F. Tian, V. K. Kruger, O. Bautista, J.-X. Duan, A.-R. Li, W. R. Dolbier, Jr., Q.-Y. Chen, Org. Lett. 2000, 2, 563–564.
- [7] a) Z.-L. Cheng, Q.-Y. Chen, Synlett 2006, 478–480 and reference cited therein; b) X. Cai, Y. Zhai, I. Ghiviriga, K. A. Abboud, W. R. Dolbier, Jr., J. Org. Chem. 2004, 69, 4210–4215; c) W. R. Dolbier, Jr., F. Tian, J.-X. Duan, A.-R. Li, S. Ait-Mohand, O. Bautista, J. M. Baker, J. Crawford, P. Anselme, X. H. Cai, A. Modzelewska, H. Koroniak, M. A. Batliste, Q.-Y. Chen, J. Fluorine Chem. 2004, 125, 459–469.
- [8] A. Brandi, A. Goti, Chem. Rev. 1998, 98, 589-636.
- [9] a) P. W. L. Bosbury, R. Fields, R. N. Haszeldine, G. R. Lomax, J. Chem. Soc., Perkin Trans. 1 1982, 9, 2203–2206; b) W. R. Dolbier, C. R. Burkholder, A. L. Chaves, A. Green, J. Fluorine Chem. 1996, 77, 31–37; c) J. T. Pechacek, T. M. Bargar, M. R. Sabol, Bioorg. Med. Chem. Lett. 1997, 7, 2665–2668; d) J. M. Birchall, R. Fields, R. Haszeldine, R. J. McLean, J. Fluorine Chem. 1980, 15, 487–495; e) M. J. Bunegar, R. Fields, R. N. Haszeldine, J. Fluorine Chem. 1980, 15, 497–509.
- [10] a) Allenes in Organic Synthesis (Eds.: H. F. Schuster, G. M. Coppola), Wiley, New York, **1984**; b) E. Block, H. R. Jeon, D. Putman, S.-Z. Zhang, *Tetrahedron* **2004**, 60, 7525–7541; c) R. W. M. Aben, S. Braverman, H. W. Scheeren, *Eur. J. Org. Chem.* **2003**, 5, 894–897; d) A. Padwa, D. N. Kline, J. Perumattam, *Tetrahedron Lett.* **1987**, 28, 913–916; e) A. J. Guildford, R. W. Turner, *J. Chem. Soc., Chem. Commun.* **1983**, 8, 466–467; f) J. R. Bull, N. S. Desmond-Smith, S. J. Heggie, R. Hunter, F.-C. Tien, *Synlett.* **1998**, 8, 900–902.
- [11] a) G. Fournet, G. Balme, J. Goré, *Tetrahedron* 1988, 44, 5809–5820; b) S. Bräse, H. Wertal, D. Frank, D. Vidovié, A. de Meijere, *Eur. J. Org. Chem.* 2005, 4167–4178.
- [12] a) F. Caturla, C. Najera, *Tetrahedron* 1997, 53, 11449–11464;
 b) T. P. Meagher, H. Schechter, J. Org. Chem. 1998, 63, 4193–4198.
- [13] a) X. Huang, H. Zhou, Org. Lett. 2002, 4, 4419–4422; b) H.
 Zhou, X. Huang, W. Chen, Synlett 2003, 13, 2080–2082.
- [14] a) L.-X. Shao, L.-J. Zhao, M. Shi, *Eur. J. Org. Chem.* 2004, 23, 4894–4900; b) B. Xu, M. Shi, *Org. Lett.* 2003, 5, 14151418; c) L.-X. Shao, B. Xu, J.-W. Huang, M. Shi, *Chem. Eur. J.* 2006, 12, 510–517 and reference cited therein.
- [15] M. Suginome, T. Matsuda, Y. Ito, J. Am. Chem. Soc. 2000, 122, 11015–11016.
- [16] a) S. E. Denmark, M. A. Harmata, K. S. White, J. Org. Chem.
 1987, 52, 4031–4042; b) J. B. van der Linden, P. F. T. M. van Asten, S. Braverman, B. Zwanenburg, Recl. Trav. Chim. Pays-Bas 1995, 114, 51–60.

Received: July 17, 2006 Published Online: October 13, 2006