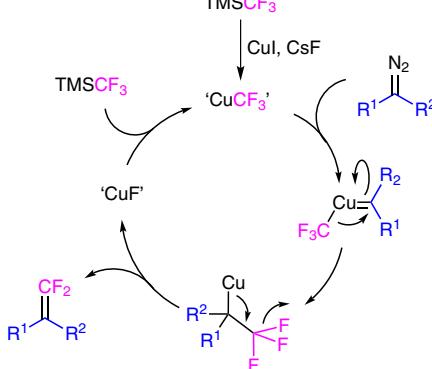


gem-Difluoroolefination of Diazo Compounds with TMSCF_3 Catayzed by Copper



R^1 = Ph, naphthyl derivatives, 4-MeC₆H₄, 3,4-(Me)₂C₆H₃, 4-*n*-BuC₆H₄, 4-*t*-BuC₆H₄, 4-MeOC₆H₄, 4-(Me)₂NC₆H₄, 3-FC₆H₄, 4-FC₆H₄, 3-CIC₆H₄, 3,4-Cl₂C₆H₃, 4-CIC₆H₄, 4-BrC₆H₄, 4-F₃CC₆H₄, 4-O₂NC₆H₄
 R^2 = Ph, 2-EtC₆H₄, 3-PhOC₆H₄, 4-(Me)₂NC₆H₄, 2-FC₆H₄, 4-FC₆H₄, 2-CIC₆H₄, 4-BrC₆H₄, Me
 R^1, R^2 = fluorene derivative

Selected examples:

Proposed mechanism:

Significance: Hu and co-workers report the copper-catalyzed synthesis of 1,1-difluoroalkenes via a *gem*-difluoroolefination reaction. The actual reagent ‘ CuCF_3 ’ is formed *in situ* with a stoichiometric amount of TMSCF_3 and catalytic amounts of CuI and CsF . Various diazo compounds are transformed into their corresponding difluorovinyl derivatives in high yield.

SYNFACTS Contributors: Paul Knochel, Nadja M. Barl
Synfacts 2014, 10(2), 0193 Published online: 20.01.2014
DOI: 10.1055/s-0033-1340572; **Reg-No.:** P17213SF

Comment: Standard approaches for the olefin synthesis, such as the olefin metathesis using 1,1-difluoroethane and a ruthenium carbene catalyst, have not been successful in introducing the $\text{C}=\text{CF}_2$ moiety. This difluorovinyl functionality may be further transformed into tri- and difluoromethyl, monofluoroalkenyl, and difluoromethylenyl groups.