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1,1-Difluorinated sulfonamides are known to have bet-

ter anti-inflammatory activity and enzyme inhibitory

potency than their nonfluorinated counterparts. Two

geminal fluorine atoms cause electronic perturbation

of the nearby polar groups enhanced the biological

activityof the 1,1-difluorinated sulfonamides.However,

because methods for their stereoselective synthesis

are scarce, such entities remain entirely unexplored.

Here, we outline an efficient method for the stereo-

selective introduction of the difluoro(aminosulfonyl)

methylgroup (CF2SO2NH2) into carbonyls, imines, and

alkyl halides with a new (R)-2-pyridyl difluoromethyl

sulfoximine reagent, which provides a unique solution

for the synthesis of chiral α,α-difluorinated sulfona-

mides with a quaternary stereocenter. Its potency is

illustrated by the synthesis offluorinated analogues of

bioactive compounds such as 2-OH-SA, an antagonist

for the GABAB receptor in guinea pig ileum, and the

late-stage modification of complex molecules such as

haloperidol, ebastine, cholesterol, and (+)-δ-tocopher-
ol derivatives. Stereoselective difluoro(aminosulfinyl)

methylation to yield chiral sulfinylamides is presented,

showcasing other uses of this new reagent.
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Introduction
Fluorine, despite its almost complete absence from bio-

logical systems in nature, has become one of the most

utilized elements for modulating the properties of bio-

logically active molecules.1,2 The sulfonamide moiety, one

of most important pharmacophores, is featured in the

structure of more than 150 U.S. FDA-approved drugs and

a growing number of experimental drugs, and is known to

act on a range of targets, including zinc metalloenzyme

carbonic anhydrases, dopamine receptors, ion channels,

and solute carriers.3–8 1,1-Difluorinated sulfonamides,

combining fluorine and sulfonamide moieties, have im-

proved anti-inflammatory activity and enzyme inhibitory
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potency and can be used as potent pharmacophores,9–12

which is rationalized by two facts: (1) the introduction of

two fluorine atoms leads to a linear increase of acidity as

well as a significant increase of lipophilicity, both of which

are beneficial for improving their binding properties9,10;

and (2) replacement of the bridging oxygen with CF2

results in an ∼18 times increase in inhibition of carbonic

anhydrase under different pH conditions9,11,12; a demon-

stration of the beneficial effect of fluorine. Thus 1,1-

difluorinated sulfonamides have been used as calcium

homeostasis regulators and cryptochrome modulators

to treat cryptochrome-dependent diseases (Figure 1a,

A–D).13,14 However, previous synthetic efforts were

completely confined to simple sulfonamides with the

general structure of RCF2SO2NR′2 (R = H, n-alkyl, or aryl),

which included stepwise nucleophilic fluorinations, con-

densations with carboxydifluoromethanesulfonamide,

and so on.9–12,15,16 The lack of stereoselective preparation

methods largely limits their applications in the field of

biological science and pharmaceutical science.17–21 Thus, a

promising method is highly desired to directly and

stereoselectively introduce the difluoro(aminosulfonyl)

methyl group (CF2SO2NH2) into molecules.22,23

Over the past decades, mild and efficient methods for

highly stereoselectivefluoroalkylations remain a formida-

ble challenge.24–27 In this context, sulfoximines, because

the sulfoximidoyl group has a strong ability to induce

stereoselectivity, have attracted much attention in the

field of asymmetric synthesis,28–32 and S-fluoroalkyl-S

-aryl sulfoximines have emerged as robust fluoroalkyla-

tion reagents.31 Based on this background, we envisioned

the stereoselectively introduction of the difluoro(arylsul-

foximidoyl)methyl group into carbonyl compounds or

imines (Figure 1b, step a), followed by aromatic C–S bond
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Figure 1 | Examples of bioactive sulfonamides and difluorinated sulfonamides, and the first stereoselective difluro

(aminosulfonyl)methylation with the sulfoximine reagent. (a) Characteristics of difluorinated sulfonamides as com-

pared to non-fluorinated analogues, and examples of bioactive difluorinated and non-fluorinated sulfonamides.

(b) First highly stereoselective difluoro(aminosulfonyl)methylationwith difluoromethyl sulfoximine reagent, providing

a unique solution for the synthesis of chiral 2-hydroxyl- and 2-amino-1,1-difluorinated sulfonamides. (c) Two modes of

sulfinamide formation by carbon-sulfur bond cleavages. BPAO, bovine plasma amine oxidase; Bz, benzoyl; TBS, tert-

butyldimethylsilyl.
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cleavage and one-pot oxidation (Figure 1b, step b) to

generate difluoro(aminosulfonyl)methylated products

with high stereoselectivities. However, the previously

known C–S bond cleavage reaction typically proceed via

reductive cleavage of the aliphatic C–S bond of sulfox-

imines to generate thermodynamically favorable arene-

sulfinamides 1 (Figure 1c, cleavage a).28–42 But if we can

switch the cleavage mode from the aliphatic C–S bond to

the aromatic C–S bond (via an SNAr ipso-substitution,

Figure 1c, cleavageb), thedifluorosulfinamidemotif could

be released. To realize our hypothesis, a new reagent, (R)-

2-pyridyl difluoromethyl sulfoximine, was developed as

an equivalent of CF2SO2NH2, which not only can satisfy

the requirements of high stereoselectivity but also

easy SNAr ipso-substitution (Figure 1b, steps a and b).a

Based on this reagent, a stereoselective introduction

of CF2SO2NH2 into carbonyls, imines, and alkyl halides

was realized to construct enantiomerically enriched

2-hydroxyl- or 2-amino-1,1-difluorinated sulfonamides,

whose nonfluorinated counterparts have been widely

used as enzyme inhibitors, antibiotics, as well as

pharmaceutical drugs for Alzheimer’s disease (Figure 1a,

E–H).43–47

Experimental Methods
General procedure for stereoselective
difluoroalkylation

Under N2 atmosphere, to a solution of ketone (0.24

mmol, 1.2 equiv) and sulfoximine (R)-3b (0.2 mmol, 1.0

equiv) in tetrahydrofuran (THF) (4 mL), was added po-

tassium hexamethyldisilazide (KHMDS) (1.0 M in THF, 0.3

mmol, 1.5 equiv) slowly at −94 °C. After 30 min, the

reaction was quenched with aqueous saturated ammo-

nium chloride (2 mL), followed by 3M HCl (6 mL). The

solution was stirred for 30 min, after which NaOH (20%

aq) was added to basify the solution, followed by extrac-

tion with ethyl acetate. The organic phase was washed

with brine and then dried over anhydrous MgSO4. After

the solution was filtered and the solvent was evaporated

under vacuum, the residue was subjected to silica gel

column chromatography using petroleum ether/ethyl

acetate as eluent to give the major diastereoisomer 5.

General procedure for synthesis of chiral
difluorosulfonamide

Under N2 atmosphere, to a schlenk-type reaction vessel

containing a magnetic stirrer and NaH (95% wt, 0.38

mmol, 2.0 equiv), was added dry dimethylformamide

(DMF) (1 mL). The solution was cooled to 0 °C and EtSH

(2 mL) was added dropwise. After the solution was

stirred for 5 min, the mixture of 5 (0.19 mmol, 1.0 equiv)

in DMF (1 mL) was added dropwise. The mixture was

stirred at 0 °C for 6 h, then at room temperature (rt) for

another 6 h. After the solvent was evaporated under

vacuum, CH3CN (1 mL), CCl4 (1mL), H2O (2 mL), NaIO4

(0.38 mmol, 2.0 equiv), and ruthenium trichloride hy-

drate (3 mg) were added to a schlenk-type reaction

vessel with the residue. The resulting mixture was stirred

at rt overnight. The completion of the reaction was

monitored by 19F NMR. After 8 mL of water was added,

the resulting black gel was filtered over celite and thor-

oughly washed with CH2Cl2, followed by extraction with

CH2Cl2. The organic phase was washed with brine and

then dried over anhydrous MgSO4. After the solution was

filtered and the solvent was evaporated under vacuum,

the residue was subjected to silica gel column chroma-

tography using petroleum ether/ethyl acetate as eluent

to give the desired product. More experimental details

are available in the Supporting Information.

Results and Discussion
Investigation of the reaction conditions

To realize this transformation, the reaction between

difluoromethyl heteroaryl or electron-deficient aryl sul-

foximines and 2-acetonaphthone (4l) was examined with

extensive screening of the reaction conditions (Table 1).

When 3a was used as the reagent, a moderate yield of

difluoromethylation products was observed via 19F NMR

spectroscopy with a 91/9 diastereomeric ratio (d.r.)

(Table 1, entry 1). However, to our delight, when employ-

ing 3b as the reagent, the yield and the diastereoselec-

tivity increased to 92% and 92/8, respectively (Table 1,

entry 2). For comparison, we conducted reactions be-

tween 4l and several other reagents. In the case of 3c, the
diastereoselectivity was 92/8 but the yield was signifi-

cantly lower than the reaction with 3b (Table 1, entry 3);

whereas in the case of 3d, the diastereoselectivity was

only moderate (Table 1, entry 4). With 3c and 3d, de-
composition of the difluoromethyl sulfoximine was ob-

served, and the preliminary results showed that these

heteroaryl substituents were less effective at stabilizing

α,α-difluorinated carbanions compared with the pyridyl

group (the 2-pyridyl group is also more beneficial

than the phenyl group to the ipso-substitution via

intermolecular Smiles rearrangement, which will be fur-

ther discussed in the part of difluoro(aminosulfonyl)

methylation).

Regarding the availability, stability, and high stereose-

lectivity, the explicit combination of ketones and 3b is

advantageous in terms of the general applicability of the

protocol. Thus, based on the combination of 3b and 4l,
we further optimized the conditions by screening several

reaction parameters, including different bases, solvents,

andmolar ratios of reactants (Table 1, entries 5–13).When

n-butyllithium (n-BuLi) or lithium hexamethyldisilazide

(LiHMDS) was used as base, both the yield and the

diastereoselectivity decreased significantly (entries 5
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and 6). Although the use of sodium hexamethyldisilazide

(NaHMDS) gave a yield of 85%, the stereoselectivity was

significantly lower than the reaction with KHMDS (entry

7). Interestingly, the addition of hexamethylphosphora-

mide (HMPA), a strong coordinating solvent, did not

affect the diastereoselectivity, although the yield de-

creased (entry 8). With KHMDS as the base, solvent

screening showed that THF was optimal in terms of yield

and stereoselectivity (entries 9–11). When the reaction

temperature was lowered, both the yield and diastereos-

electivity improved slightly (99% yield, 94/6 d.r.; entry 12).

Further optimization of the reaction conditions by chang-

ing the ratio of 4l, 3b, and KHMDS did not further improve

the result (entry 13). Importantly, slow quenching of the

reaction at low temperature is essential to prevent the

Smiles rearrangement and subsequent elimination that

produce 1,1-difluoroalkenes.48 Notably, this is the first

reported synthesis of (R)-3b (Figure 2), and the optically

Table 1 | Survey of Reaction Conditionsa,b

Ar
S

O NTBS

CF2H
Base

O HO
S

Ar
+

F F
Me

O NH

34l (2S,Rs)-5l

Solvent, −78 oC

S
O NTBS

CF2H
S

O NTBS

CF2H
S

O NTBS

CF2H
S

O NTBS

CF2H

3a 3b 3c 3dO2N
N

N

N

S

N

Entry 4l/3/Base Base Solvent Yield (%) d.r.

1c 1.2/1.0/1.5 KHMDS THF 57 91/9

2 1.2/1.0/1.5 KHMDS THF 92 92/8

3d 1.2/1.0/1.5 KHMDS THF 14 92/8

4e 1.2/1.0/1.5 KHMDS THF 34 87/13

5 1.2/1.0/1.5 n-BuLi THF 22 83/17

6 1.2/1.0/1.5 LiHMDS THF 42 87/13

7 1.2/1.0/1.5 NaHMDS THF 85 82/18

8f 1.2/1.0/1.5 KHMDS THF/HMPA 52 92/8

9 1.2/1.0/1.5 KHMDS Et2O 88 90/10

10 1.2/1.0/1.5 KHMDS PhMe 87 89/11

11 1.2/1.0/1.5 KHMDS DCM 91 88/12

12g 1.2/1.0/1.5 KHMDS THF 99(91) 94/6(98/2)

13g 1.5/1.0/1.5 KHMDS THF 95 94/6

a Typical procedure: The base was added slowly to a solution of 3 and 4l in THF; 0.5 h later, saturated NH4Cl (aq) was

added slowly at −78 °C. Unless otherwise noted, 3b was used.
b Yields and d.r. values were determined by 19F NMR analysis. The yield in parenthesis is the isolated yield of the major

diastereoisomer. The d.r. in parenthesis was determined by 19F NMR analysis of the isolated major diastereoisomer.
c 3a was used.
d 3c was used.
e 3d was used.
f v/v = 10/1.
g The temperature was −94 °C.

KHMDS,
Weinreb amide

N

S
CF2H

O NTBS

(R)-3b
71% yield, >99% ee

then LiHMDS, NFSI
N

S
Me

O NH

N

S
CH2F

O NTBS
(1) TBSCl, pyridine, rt

(2) nBuLi, NFSI

74% yield
(2 steps)

51% yield
(2 steps)

78 oC rt 78 oC rt

Figure 2 | Synthesisof (R)-3b. HMDS,hexamethyldisilazide; TBS, tert-butyldimethylsilyl,NFSI,N-fluorobenzenesulfonimide.
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pure product as a stable solid was obtained on 4.3 g scale

(please see the Supporting Information for details).b

Substrate scope

Having established the reaction conditions, we subse-

quently examined the substrate scope with (R)-3b

(Table 2), and the N-desilyated products were obtained,

which facilitated subsequent derivations of the products.

The reaction could tolerate many functional groups, such

as chloro, bromo, iodo, methoxy, methylthio, and ethynyl

groups (Table 2, entries 1–7). The facial selectivity was

insensitive to both the electronic nature and position of

substituents (entries 8 and 9). And fused aromatic rings,

such as naphthalene and phenathrene, were also compati-

ble with the current reaction (entries 11–13). In addition, the

cyclic aromatic ketone, 3,4-dihydronaphthalen-1(2H)-one,

was a suitable substrate to afford the corresponding prod-

uct 5n in 88% yield with 95/5 d.r. (entry 14). The reagent

also reacted with an aldehyde in excellent diastereo-

selectivity (entry 15). Pharmaceutically important hetero-

aromatics, such as benzopyridine, pyrrole, and thiophene,

furnished the corresponding products in excellent yields

with high d.r. values (entries 16–19). Remarkably, when

imines were investigated as substrates, products 5t–5v

were obtained with high stereoselectivity (entries 20–22).

The absolute configuration of 5n was confirmed by X-ray

crystal structure analysis and the newly formed quaternary

carbon center was found to be in the S configuration.

Rationalization of diastereoselectivity

Because the addition of HMPA does not influence the

diastereoselectivity of the difluoromethylation of 4l with

(R)-3b (Table 1, entry 8), we propose that the cation

might not participate in the transition state, which is

different from the reactions of lithiated sulfoximine and

ketone.49 One can envisage several possible nonchelated

transition states, such as TS-1, TS-2, TS-3, and TS-4, as

shown in Figure 3. Since the repulsive interactions of

Table 2 | Investigation of the Substrate Scopea

KHMDS (1.5 equiv)

(2S,Rs)-5
THF, −94 oC, 30 min

S
O NTBS

CF2H

(R )-3bN

+

4

S

F F
R1

XR2 O NH

NR1 R2

X

Entry 4 5 Yield (%) d.r.b

1 C6H5COCH3 (4a) 5a 84 99/1(92/8)

2 4-ClC6H4COCH3 (4b) 5b 86 99/1(92/8)

3 4-BrC6H4COCH3 (4c) 5c 83 99/1(92/8)

4 4-IC6H4COCH3 (4d) 5d 78 99/1(93/7)

5 4-MeOC6H4COCH3 (4e) 5e 82 99/1(96/4)

6 4-MeSC6H4COCH3 (4f) 5f 90 99/1(94/6)

7 4-Ethynyl-C6H4COCH3 (4g) 5g 70 99/1(94/6)

8 3-MeOC6H4COCH3 (4h) 5h 85 99/1(91/9)

9 2-ClC6H4COCH3 (4i) 5i 52 99/1(95/5)

10 C6H5COCH2CH3 (4j) 5j 88 99/1(93/7)

11 1-(Naphthalen-1-yl)ethanone (4k) 5k 74 99/1(94/6)

12 1-(Naphthalen-2-yl)ethanone (4l) 5l 91 98/2(94/6)

13 1-(Phenanthren-2-yl)ethanone (4m) 5m 74 99/1(93/7)

14 3,4-Dihydronaphthalen-1-(2H)-one (4n) 5n 88 99/1(95/5)

15 4-MeOC6H4CHO (4o) 5o 91 99/1(95/5)

16 6-Acetylquinoline (4p) 5p 82 95/5(92/8)

17 2-Acetyl-1-methylpyrrole (4q) 5q 71 99/1(94/6)

18 1-(Thiophen-2-yl)ethanone (4r) 5r 92 99/1(94/6)

19 1-(Thiophen-3-yl)ethanone (4s) 5s 82 99/1(90/10)

20c N-Bus-ketimine (4t) 5t 85 95/5(90/10)

21c N-Ts-ketimine (4u) 5u 75 96/4(94/6)

22c N-Bus-aldimine (4v) 5v 82 95/5(90/10)

a Yields indicated are isolated yields of themajor diastereoisomer. Diastereomeric ratio (d.r.) values are determined by
19F NMR analysis of the isolated major diastereoisomer. Bus, tert-butylsulfonyl; Ts, toluenesulfonyl.
b The d.r. values in parentheses were determined by 19F NMR analysis of the crude products.
c Dichloromethane (DCM) was used instead of THF.
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CH3⋯S=NTBS and Ph⋯S=NTBS are stronger than that of

CH3⋯S=O in TS-3 and TS-4, TS-1 and TS-2 are disfavored

(RL = Ph; Rs = CH3). And considering that the steric

hindrance of Py⋯Ph is stronger than that of Py⋯CH3,

TS-3 is energetically less favorable than TS-4. Thus TS-4

is the most favorable transition state that can give the

product of 2S,Rs-5.

Difluoro(aminosulfonyl)methylation

With a series of enantiomerically enriched difluorosulfox-

imines in hand, we continued our investigation on the

removal of the pyridyl group to prepare difluorosulfina-

mides. With the isolated major diastereomer of 5l as a

model compound, the desired (R)-hydroxyl difluorinated

sulfinamide was obtained in 85% yield with excellent

stereoselectivity when sodium ethanethiolate/etha-

nethiolwas applied inDMF solution (Figure 4a; for details,

see Supporting Information Table S1).50–54 It is worth not-

ing that phenyl sulfoximine 7 failed to undergoPh–Sbond

cleavage under the same conditions, indicating the ne-

cessity of the 2-pyridyl group in this transformation.

Simple oxidation of unpurified sulfinamides with the

neutral aqueous conditions of RuCl3/NaIO4 in one pot

provided the desired enantiomerically enriched difluor-

osulfonamides 8–10 in good to excellent yields. The

substrate scope was found to be insensitive to the diver-

sity of functional groups and the effects of steric hin-

drance and electronic induction, and the α-hydroxyl
difluorosulfonamides were efficiently generated (8a–8e,
Figure 4b). Additionally, this method is applicable to

other types of substrates, such as imines and alkyl

halides, and the β-amino difluorosulfonamides and alkyl

difluorosulfonamides were obtained (9 and 10).
To further illustrate the potential value of our present

difluoro(aminosulfonyl)methylation reaction in organic

synthesis, we applied it to the preparation of a difluori-

nated analogue of 2-OH-SA, which is one of the antag-

onism agents for the GABAB receptor in guinea pig

ileum47 (Figure 4c). The difluoro sulfoximine 12 was

transformed into difluoro sulfonamide 13 in 49% yield

with 97/3 enantiomeric ratio (e.r.) without any loss of

chirality. Notably, this is the first preparation of enantio-

merically enriched fluorinated 2-OH-SA 13 from an easi-

ly accessible 11. And, a one-pot procedure can give 8d
from the starting ketonewith high efficiency and stereo-

selectivity (Figure 4d). In addition, it can also be readily

scaled up. For example, a gram-scale reaction with

(+)-δ-tocopherol derivative gave 8f in 74% yield with

high stereoselectivity (Figure 4d).

Difluoro(aminosulfinyl)methylation

Considering chiral sulfinamides have beenwidely used as

chiral auxiliaries, as ligands in transition-metal catalysis,

and as organocatalysts,55–58 we were interested in deter-

mining whether the corresponding sulfinamide can be

obtained. To our delight, with the optimal reaction con-

ditions, various enantiomerically enriched difluorosulfi-

namides were isolated after SNAr reaction (Figure 5a).

Startingmaterials bearing electron-rich or -deficient sub-

stituents were all able to give 6a and 6b in good yields

with high d.r. values. When the substituent is an ethyl

group, the reaction also proceeded smoothly affording

6d in 75% yieldwith 99/1 d.r. The reactionwas compatible

with imines and alkyl halides such as 14 and 15 without

erosion of stereoselectivities.

Themethod could be utilized in the late-stagemodifica-

tion of complex molecules in a one-pot sequence, directly

from carbonyl compounds. For instance, the difluoro(ami-

nosulfinyl)methyl groupwas introduced into Ebastine (18)
and cholesterol derivative (16) efficientlywith high stereo-

selectivities. Furthermore, the antipsychotic agent Halo-

peridol, which contains tertiary alcohol and tertiary amine

functionalities, was also successfully transformed into an

enantiomerically enriched diamine (17).
To show the potential application of these sulfinamides,

19 (see Supporting Information, Part 16) was transformed

into the chiral sulfonimidoyl fluoride 20 in 74% overall yield

with 99/1 d.r. by the sequence of oxidation chlorination and

RL

F

F

S

O NTBS

Py

XRS

RS

F

F

S

O NTBS

Py

XRL

TS-1 TS-2
(Disfavored) (Disfavored)

RS

F

F

S

O NTBS

Py

XRL

TS-3
(Disfavored)

RL

F

F

S

O NTBS

Py

XRS

TS-4
(Favored

2S, RS-52R, RS-52R, RS-52S, RS-5

)

Figure 3 | Proposed transition states. Repulsive interactions are indicated by curved arrows.
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Figure 4 | (a) Comparison of phenyl sulfoximine and pyridyl sulfoximine. (b) Substrate scope of the stereoselective
difluoro(aminosulfonyl)methylation reactions. (c) Highly stereoselective synthesis of difluorinated 2-OH-SA. (d)One-pot
and scaled-up reactions. Yields are the isolated yields of the major diastereoisomers. 19F NMR analysis of the isolated
product was used to determine d.r. values. The ratios in parentheses were determined by 19F NMR analysis of the crude
difluoro sulfinamides. HPLC analysis of the difluoro sulfinamides was used to determine the e.r in parentheses. See the
Supporting Information for details. HPLC, high-performance liquid chromatography; Bus, tert-butylsulfonyl; Boc, tert-
butoxycarbonyl;. aThe product was obtained from Ph(CH2)3CF2SO(NH)Py.
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fluorine-chlorine exchange (Figure 5b; also see Supporting

Information, Part 16). Notably, 20 is usually used in

the sulfur(VI) fluoride exchange (SuFEx) reaction, in which

an S–Fmoiety easily reacts with C-, N-, and O-nucleophiles

to generate sulfoximines, sulfonimidamides, and sulfonimi-

dates.59,60 As an example, treating 20 with a C-nucleophile

constructed the n-butyl substituted sulfoximine compound

21without the erosion of the enantioselectivity (Figure 5b).

Sulfoximinesareknownasarisingstar indrugdiscovery,and

this is the first example of conversion of an aryl sulfoximine

to alkyl sulfoximine.61,62 Furthermore, we realized the itera-

tive addition of 3b to produce a compound 23 with two

carbon stereocenters and two sulfur stereocenters

(Figure 5c). In addition, when nonfluorinated sulfoximine

reagent 24 reacted with carbonyl compound 4o under the

developed reaction conditions, the corresponding product

25 was obtained in good yield with high d.r. (Figure 5d),

which not only represents an efficient method for highly

stereoselective(aminosulfinyl)methylationbutalsoextends

the scope of this methodology.

Conclusion
Wehave demonstrated a new reagent, (R)-difluoromethyl

2-pyridyl sulfoximine, and an unprecedented method for

synthesis of chiral β-functionalized α,α-difluorosulfona-
mides. In contrast to the traditional chiral auxiliary group

chemistry, (R)-difluoromethyl 2-pyridyl sulfoximine in this

method is a bifunctional agent, not only serving as a

stereoselectivecontrollerbutalsoasanequivalent tochiral

sulfinamide, which is conceptually new in sulfoximine

chemistry. Practically, it allows accessing and probing the

ability of an assortment of new stereochemically defined

difluoro sulfonamide analogues as therapeutic agents in

biological andpharmaceutical science. Theselectionof the

2-pyridyl group is crucial for the success of this transfor-

mation, which facilitates both the nucleophilic fluoroalkyl

addition as well as the subsequent ipso-substitution pro-

cess. This difluoro(aminosulfonyl)methylationwas applied

tothesynthesisofbioactivecompoundsandthe late-stage

modification of complexmoleculeswith good tolerance of

functional groups. What is more, this reagent allows the

synthesis of chiral sulfinylamides and α,α-difluorosulfinyla-
mides. Potential transformations can highlight their appli-

cations for the construction of sulfonimidoyl fluorides and

multiple stereogenic centers.Notonly does ourworkdem-

onstrate an intriguing new reactivity of sulfoximines, but it

also serves as a basis for the further development of

stereoselective (aminosulfonyl)methylation or (aminosul-

finyl)methylation for many potential applications.28–32,63–65

Footnotes
a This research not only shows the high stereocontrolling

ability of the heteroaryl sulfoximidoyl group, but also

uses the difluorosulfoximidoyl group as an equivalent of

dilfuorosulfonamide.
b CCDC 1444415 (S1; see Supporting Information Figure

S1 and Tables S2–S8), CCDC 1444416 (5n; see Supporting

Information Figure S2 and Tables S9–S15), and CCDC

1444417 (S7; see Supporting Information Figure S3 and

Tables S16–S22) contain the supplementary crystallo-

graphic data for this paper. The data can be obtained

free of charge from The Cambridge Crystallographic

Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Supporting Information
Supporting Information is available including experimen-

tal details and characterization.
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