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# Bench-stable, industrially available reagents
# Multiple functionalizations in one pot
# Convenient to operate # 28 examples
# Simple purification # Up to 84% yield

A one-pot transformation of aliphatic and aromatic tertiary amines to novel fluorinated enaminones has been developed, utilizing
perfluoroalkyl ether carboxylates (PFECA salts) featuring “—CF,0—" units as the fluorine-containing reagents. Carbonyl fluoride, acyl
fluorides and anhydrides by thermal decomposition of these PFECA salts were proposed to act as key active species that trigger the
tandem oxidation—acylation process of tertiary amines, through enamine intermediates.
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Background and Originality Content

B-Amino-a,B-unsaturated carbonyl compounds (enaminones)
are a class of vinylogous amides that serve as versatile building
blocks in organic synthesis, especially for the construction of a
wide range of heterocyclic compounds.m To date, the utility of
enaminones as biologically active compounds or their precur-
sors,[lk'm’zl ligands for transition metal catalysis,B] and organocat-
alysts[4] has also been extensively exploited. Several useful syn-
thetic approaches to enaminones include treatment of N,N-di-
methylformamide dimethyl acetal (DMFDMA),[S] Bredereck’s rea-
gent,[sl or Gold’s reagentm with ketones, as well as the reaction of
primary or secondary amines with a,8-unsaturated carbonyl com-
pounds bearing a B-leaving group by addition—elimination path-
ways.[S] Recently, some novel synthetic methodologies have also
emerged for the construction of fluorinated enaminones."”!

In addition to the aforementioned methods, the oxidation—
acylation for the facile conversion of tertiary amines to enami-
nones in a stepwise fashion has also been reported, albeit to a
much lesser extent. To this end, one strategy involves in situ de-
hydrogenation of amines to give enamines using oxidants such as
TiCI4[1°] or (tBuO)z/CuBrz,[m followed by subsequent acylation
reactions. When highly electron-deficient acyl precursors are em-

T

ployed such as perchloroacyl chlorides,” perfluoro(chloro)acyl
fluorides,[m] trifluoroacetic anhydride,m] perfluoroalkyl hal-
ides,[”] hexachloroacetone,lls] or phosgene,[m] they may function
as both one-electron oxidizing agents and acylating agents to ac-
complish the formation of perfluoro(chloro)acyl-based enami-
nones. The reactions were commonly believed to proceed via
single electron transfer (SET) pathways. However, the low boiling
points, high reactivity and toxicity of these perhalogenated rea-
gents, along with their limited availability and narrow substrate
scope have always been retarding research on the intriguing
enaminone synthesis reactions.

Perfluoroalkyl ether carboxylic acids (PFECAs), with the gen-
eral formula of F(CF,0),CF,CO,H, are industrial by-products in the
manufacture of hexafluoropropene oxide (HFPO).[m In compari-
son to the non-oxygenated counterparts, i.e., perfluoroalkyl car-
boxylic acids (PFCAs), one of the most prominent features of the
PFECAs is the fluoroether chain with consecutive “—CF,0-" mod-
ules. This structural characteristic makes them prone to be fully
fragmented upon decarboxylation. The higher degradabilityug]
and lower toxicitym] of the short-chain PFECAs are making them
potential alternatives to persistent organic pollutants (POPs) for
design of more ecofriendly fluorosurfactants and functional mate-
rials.?"!

The synthetic methodology utilizing F(CF,0),CF,CO,M to in-
troduce fluorine-containing functional groups has also been de-
veloped (Scheme 1). In 1995, Palmer et al.! reported the use of
CF;0CF,CO,K and F(CF,0),CF,CO,K in copper(l)-mediated trifluo-
romethylation of aryl or benzyl halides (Scheme 1A). Recently,
such PFECA salts have also been developed by us as carbonyl fluo-
ride precursors for the deoxyfluorination of alcohols,? carboxylic
acids, sulfonic acids, phosphinic acids and secondary phosphine
oxides™ (Scheme 1B—C). The thermal decomposition of this kind
of perfluoroetherated carboxylates is expected to produce carbon
dioxide, a trifluoromethide species (“KCF;” for example) and var-
ying amount of carbonyl fluoride, depending on the chain length.
Thus, these salts can serve as latent multifunctional reagents for
introduction of manifold fluorine-containing groups by reaction
design.

Since (polyoxy)perfluoroacyl fluorides and anhydrides are un-
stable, low-boiling-point and highly toxic reagents, we aim to use
safer reagents to investigate the analogous reaction towards ter-
tiary amines. Fortunately, F(CF,0),CF,CO,M may combine carbon-
yl fluoride with untransformed carboxylates to produce the fluor-
inated electrophiles in situ by controlling the decomposition rates
and pathways of F(CF,0),CF,CO,M. These PFECA salts can be
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readily prepared from corresponding esters by hydrolysis with
metal hydroxides [M = alkaline (earth) metal] or quaternization of
tertiary amines [M = NR,]. They are bench-stable, storable and
easy-to-handle reagents, prospective to be a novel source of per-
fluoroether-modified enaminone precursors in the presence of
tertiary amines. Herein, we report the reaction between tertiary
amines and F(CF,0),CF,CO,K, which enables the synthesis of mul-
tifunctionalized 3-(disubstituted-amino)alkenyl polyoxyperfluoro-
alkyl ketones through a remarkably straightforward approach
(Scheme 1D).

Scheme 1 Reactions of F(CF,0),CF,CO,M

A) Palmer (1995)
F(CF,0),CF,COK
| (n=1,2) CF,
Y
Cul, DMF, 115°C
B) Our previous work (2020)

F(CF,0),CF,CO,K
R! (n=1,2,3,4,5) R

o F(CF,0),CF,COK o
R-X=OH —————————> R-X=F
) MeCN, 80 "? )
X=C,S or DMF, 135 °C
9 F(CF,0),CF,COK )
R=P=Y R-P=F
R DMF, 80 °C R
Y =OH, H
D) This work:
F(CF,0),CF,COK
R' R (n=1,2,34) R' R
Z,N\) 2,N\/}rCF2(OCFZ),,F
R MeCN or EtOAc, heat R )
R, R? = alkyl, aryl
R® = alkyl

Results and Discussion
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Inasmuch as PFO2HxA salts [F(CF,0),CF,CO,M] are proven to
be effective carbonyl fluoride precursors,” " the potassium salt
of PFO2HxA (1b, PFO2HxA-K) was chosen to begin our screening
of the reaction conditions. With tri-n-hexylamine (2a) as the sub-
strate, enaminone 3b could be afforded in moderate yield when
ethyl acetate (Table 1, entry 1), glymes (Table 1, entries 2, 3) or
acetonitrile (Table 1, entry 4) was used as solvents, where ace-
tonitrile gave the best result of 50% yield (Table 1, entry 4). In
contrast, other polar aprotic solvents such as DMF or DMSO ap-
peared to be unsuitable for the reaction (Table 1, entries 5, 6),
presumably due to their higher reactivity towards carbonyl fluo-
ride.”” Other non-polar solvents, e.g., 1,4-dioxane, DCE, and tol-
uene, did not provide satisfactory results, either (Table 1, entry 7—
9), which might be attributed to the poor coordination ability of
the solvent to separate bare carboxylate ions from potassium ions,
inhibiting the decarboxylation processes. Insufficiency of 1b was a
detriment to the yield (Table 1, entry 10). In contrast, a higher
yield was obtained by employing 2.0 equiv. of 1b (Table 1, entry
11), and little did such equivalent affect the result when excess
(Table 1, entry 4, 12-14). Additionally, the concentration of sub-
strates was found to be a crucial factor in the reaction (Table 1,
entries 11, 15-17). With ca. 1.6 moles of 1b dissolved in per liter
acetonitrile, the yield reached up to 66% (Table 1, entry 16). Be-
sides, it is appealing that the reaction seemed to be insensitive to
air, at the expense of a minor yield loss (Table 1, entry 18). A reac-
tion temperature of 85 °C rendered the yield slightly higher (Table
1, entry 19), whereas the decomposition rate of 1b turned strik-
ingly slow below 70 °C (Table 1, entries 21, 22). Furthermore, a
reaction period of 6 h was perceived to suffice, giving a 70% yield
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(Table 1, entry 25), and an extension of reaction time did not sig-
nificantly impact the result (Table 1, entries 19, 26).

Table 1 Optimization of the reaction conditions on PFO2HxA-K"

nzex "By F(CF,0),CF,CO.K (1b, x equiv.) nHex/”Nljex/”Bu e o0rr
"Hex” solvent, temp., time g
2a 3b
entry  x/equiv.  solvent (mL) temp./°C  time/h yield’/%
1 3.0 EtOAc (1.5) 80 12 42
2 3.0 monoglyme (1.5) 80 12 48
3 3.0 diglyme (1.5) 80 12 19
4 3.0 MecCN (1.5) 80 12 50
5 3.0 DMF (1.5) 80 12 5
6 3.0 DMSO (1.5) 80 12 0
7 3.0 1,4-dioxane (1.5) 80 12 0
8 3.0 DCE (1.5) 80 12 7
9 3.0 toluene (1.5) 80 12 0
10 15 MeCN (1.5) 80 12 43
11 2.0 MeCN (1.5) 80 12 57
12 2.5 MeCN (1.5) 80 12 52
13 3.5 MecCN (1.5) 80 12 51
14 4.0 MecCN (1.5) 80 12 50
15 2.0 MecCN (1.0) 80 12 55
16 2.0 MecCN (0.5) 80 12 66
17 2.0 MeCN (0.25) 80 12 42
18° 2.0 MecCN (0.5) 80 12 60
19 2.0 MecCN (0.5) 85 12 68
20 2.0 MecCN (0.5) 75 12 66
21 2.0 MecCN (0.5) 70 12 10
22 2.0 MeCN (0.5) 65 12 <1
23 2.0 MeCN (0.5) 85 1.5 11
24 2.0 MeCN (0.5) 85 3 59
25 2.0 MeCN (0.5) 85 6 70 (60%)
26 2.0 MeCN (0.5) 85 24 68

% Reaction conditions: tri-n-hexylamine (2a, 0.4 mmol, 1.0 equiv.) and
PFO2HxA-K (1b, as indicated) were reacted in anhydrous solvent under an
argon atmosphere. ®The yield of 3b was determined by *F NMR of the
crude reaction mixture using benzotrifluoride as the internal standard.
“The reaction was conducted in air. ¢ Isolated yield.

Clearly, the optimized conditions with respect to PFO2Hx-K
might not be the most suitable ones for other homologous PFECA
salts, especially in terms of their equivalents and concentrations.
It can be foreseen that perfluoro-2-methoxyacetates (PFMOAA-M,
CF;0CF,CO,M) are much less efficient to furnish the desired
products as they behave less like carbonyl fluoride reservoirs. In
addition, the fate of the concomitantly generated though postu-
lated “trifluoromethyl anion”, which is apt to complicate the reac-
tion, is still unclear. Thus, a series of PFMOAA salts with diversified
cations was prepared to apply to the reaction for not only better
results but illustration on the function of cations as well (Table 2).

To draw an analogy with the best screened conditions of
PFO2Hx-K above, PFMOAA-M was initially set at 3.0 equiv. relative
to 2a (1.0 equiv. for construction of acyl moiety in enaminone 3
and 2.0 equiv. for release of COF,) in a 1.6 M solution of acetoni-
trile (i.e., 0.75 mL MeCN). For PFMOAA salts with “harder” cations

(e.g., Na*, Ca®*, sr** and Ba>) as counterions, the desired product
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could not be obtained presumably due to the strong electrostatic
interactions between ions that inhibited decarboxylation process-
es of such salts (Table 2, entry 1, 6—8). Quaternary ammonium
salts almost completely decomposed under the reaction condi-
tions, yet leading to other complex decomposition products re-
maining 2a nearly intact (Table 2, entries 9, 10). The ¥F NMR pat-
tern for reaction using PFMOAA-Cs as substrate resembled that of
PFMOAA-NMe,, though unreacted PFMOAA-Cs and a small
amount of 3a were also detected (Table 2, entry 4). Amongst all of
the PFMOAA salts, only potassium and rubidium salts were veri-
fied to be effective reagents for the reaction, with PFMOAA-K
exhibiting the highest yield (Table 2, entries 2, 3). Furthermore,
the reaction was completely inhibited by the chelating agent
18-crown-6 (Table 2, entry 5), suggesting that solvated potassium
ions are of critical importance to accessing enaminone 3a.

Table 2 Optimization of the reaction conditions on PFMOAA-M*®

"Hex "Bu  CF;0CF,CO,M (x equiv.) "Hex "Bu
\ o N2 CF,OCF,
THex MeCN, 85 °C, 6 h Hex I
2a 3a
entry PFMOAA-M x (equiv.) solvent (mL) yield®/%
1 CF;0CF,CO;Na 3.0 MecCN (0.75) 0
2 CF30CF,COK 3.0  MeCN(0.75) 40 (339
3 CF;0CF,CO,Rb 3.0 MecCN (0.75) 18
4 CF30CF,C0O,Cs 30 MeCN(0.75) 2
5°  CF3OCF,CO,[K(18-crown-6)] 3.0 MeCN (0.75) 0
6 (CF30CF,C0,),Ca 15 MeCN (0.75) 0
7 (CF30CF,CO,),Sr 15 MeCN (0.75) 0
8 (CF30CF,CO,),Ba 1.5 MeCN(0.75) o
9 CF30CF,CO,” MeyN* 3.0 MeCN (0.75) 0
10  CFs0CF,CO, MesN*("CigHsy) 3.0 MeCN (0.75) 0
1 CF30CF,CO.K 35 MeCN(0.75) 26
12 CF30CF,CO.K 35 MeCN (1.0) 31
13 CF30CF,CO,K 3.0 MeCN (0.5) 24
14 CF30CF,CO,K 3.0 MeCN (1.0) 32
15 CF30CF,CO.K 2.5 MeCN (0.5) 35
16 CF30CF,COK 25  MeCN(0.75) 33
17 CF;0CF,CO,K 2.5 MeCN (1.0) 33

© 2025 SIOC, CAS, Shanghai, & WILEY-VCH GmbH

? Reaction conditions: tri-n-hexylamine (2a, 0.4 mmol, 1.0 equiv.) and
PFMOAA-M (as indicated) were reacted in anhydrous acetonitrile (0.75 mL)
at 85 °C for 6 h under an argon atmosphere. ®The yield of 3a was deter-
mined by *°F NMR of the crude reaction mixture using benzotrifluoride as
the internal standard. “PFMOAA-K (3.0 equiv.) and 18-crown-6 (3.0 equiv.)
were applied. ?Isolated yield.

The optimal reaction conditions for PFMOAA-K speculated
from those of PFO2HxA-K [1.0 equiv. for acylation plus (2.0/n)
equiv. of latent “COF,” excess for F(CF,0),CF,CO,K whose concen-
tration was kept 1.6 M in acetonitrile, as mentioned above] were
validated by additional control experiments (Table 2, entries 11—
17). With the rule of thumb concluded thereby, it was deduced
that 1.7 equiv. PFO30A-K in 0.45 mL acetonitrile and 1.5 equiv.
PFO4DA-K in 0.4 mL acetonitrile were the respective appropriate
conditions when 0.4 mmol tertiary amine substrate was applied.
Besides, it is noteworthy that 2a converted more to its difluoro-
carbene-derived side product "Hex;N*CF,H as postulated by 9
NMR (6f = -112.06, d, J = 57.8 Hz, in MeCN) with PFMOAA-K (33%)
compared to PFO2HxA-K (10%) under their respective best condi-
tions, which might result in a much lower yield of 3a than 3b.

With the optimized conditions in hand, we next started to in-
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vestigate the scope of substrates (Scheme 2). In terms of other
F(CF,0),CF,CO,K reagents, longer-chain homologs PFO30A-K (1c,
n = 3) and PFO4DA-K (1d, n = 4) performed fairly well in compari-
son with PFO2HxA-K (3b—3d, 3f-3h). PFMOAA-K, on the other
hand, did not yield equally desirable results under similar condi-
tions (3a, 3e). With 1b applied, tri-n-alkylamines with longer
chains gave satisfactory results (3b, 3j), whereas the yields of cor-
responding enaminones decreased sharply with amines becoming
less sterically demanding (3f, 3i). We postulate that side reactions
involving difluorocarbene and carbonyl fluoride towards less ste-
rically encumbered substrates may become more prominent,
leading to lower yields of target enaminone products. The
trans-configuration of enaminone 3f could be confirmed by its 2D
NOESY spectrum (see Supporting Information). A single methyl
substituent on nitrogen did not affect the yield to a great extent
with an amine bearing two other dodecyl groups (3k). In contrast,
methyl- or benzyl-substituted cyclic aliphatic amines are more
prone to undergo side reactions, leading to lower yields of enam-
inones (31-30), and oxidation-reluctant N-methylmorpholine is
seemingly incompatible with the reaction conditions (3p).

Scheme 2 Reaction scope for the synthesis of enaminones with aliphatic
. a
amines

1 3
R R MeCN or EtOAc R R
N + F(CFy0),CF,COK ——— > ,NJYCFz(OCFz)nF
r? < " 80-85 °C, 6-24 h R?
2 1 o
3
”}‘-Iex "Bu "ﬁ‘r Me E‘Et
_N_Zh_CF,(OCF,),F ,N@Yca(oca) F _N__A~__CF,(OCF,),F
"Hex 2 " npr " Et W
o) o o
3a, 33% (33%") (n = 1); 3e, 26% (46%°) (n = 1); 3i, 17%.

3b, 60% (43%P) (n =2);
3¢, 62% (n=3);
3d, 57% (n = 4).

3f, 43% (33%P) (n = 2);
39, 41% (54%P) (n = 3);
3h, 34% (n = 4).

n
E CmHzéF S o CF,(OCFy),F ﬁ)(
"G oM JW 2(OCF2),l N /‘<O Me’NWCF‘(OCFz)ZF
o] [¢]

31, 16% (R = Me);
30, 11% (R = Bn).

3m, 13% (X = CHy);
3n, 21% (X = NMe);
3p, 0% (X = 0).

"By R R %CFz(OCFZ)ZF
U

,,BU/NJYCFZ(OC&)”F Ph,NWCF;(OCF;),F e N/ %

i

o o -

3j, 51% (R ="CqHas);
3k, 40% (R = Me).

3q, 49%° (n=1);
3r, 73%° (n = 2);
3s, 84%" (n = 3);
3t,67% (n=4).

3u, 38%”° (Ry = "Pr, Ry = Me);
3v, 45%" (R = "Bu, R, = Et).

3w, 0% (41%°) (R = H);
3x, 41%' (R = 3-Br);
3y, 45%' (R = 4-Br);
3aa, 26%’ (R = 3,4-OCH,0).

o

o
I\O\(CFZ(OCFQ)QF Mcmooa)i [ CFaOCF2:F
/ED o) N N
Br '\‘Ae

3z, 16% (42%). 3bb, 41%. 3cc, 51%.9

“Reaction conditions: 2 (0.4 mmol, 1.0 equiv.) and 1 (1a, 3.0 equiv.; 1b,
2.0 equiv.; 1c, 1.7 equiv.; 1d, 1.5 equiv.) were reacted in anhydrous ace-
tonitrile (1a, 0.75 mL; 1b, 0.5 mL; 1c, 0.45 mL; 1d, 0.4 mL) at 85 °C for 6 h
under an argon atmosphere. ®Reaction conditions: 2 (0.4 mmol, 1.0 equiv.)
and 1 (3.0 equiv.) were reacted in anhydrous ethyl acetate (1.5 mL) at
80 °C for 24 h under a nitrogen atmosphere. “Reaction conditions: 2 (0.2
mmol, 1.0 equiv.) and 1a (6.0 equiv.) were reacted in anhydrous ethyl
acetate (1.5 mL) at 80 °C for 24 h under an argon atmosphere. ?Reaction
conditions: 2 (0.4 mmol, 1.0 equiv.) and 1d (3.0 equiv.) were reacted in
anhydrous ethyl acetate (2.0 mL) at 80 °C for 24 h under a nitrogen at-
mosphere. ¢ Reaction conditions: 2 (0.3 mmol, 1.0 equiv.) and 1b (3.0
equiv.) were reacted in anhydrous ethyl acetate (1.5 mL) at 80 °C for 24 h
under a nitrogen atmosphere. f Reaction conditions: 2 (0.6 mmol, 1.0
equiv.) and 1b (3.0 equiv.) were reacted in anhydrous ethyl acetate (3.0
mL) at 80 °C for 24 h under a nitrogen atmosphere. ¢ Reaction conditions:
2 (0.2 mmol, 1.0 equiv.) and 1b (3.0 equiv.) were reacted in anhydrous
ethyl acetate (1.0 mL) at 80 °C for 24 h under a nitrogen atmosphere.

Furthermore, aromatic tertiary amines were also taken into
account. Under the same reaction conditions in regard to

1850 www.cjc.wiley-vch.de
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PFO2HxA-K in acetonitrile, we found that electron-rich aromatic
tertiary amines like N-phenylpyrrolidine (2w) are more susceptible
to side reactions such as Friedel-Crafts acylation, while
N-(4-bromophenyl)piperidine turned out to be much less reactive
possibly attributed to its electron-deficiency and limited solubility
(3z). Hence, a less polar solvent, ethyl acetate, was utilized instead.
In addition, a larger amount of 1b (3.0 equiv.) and prolonged reac-
tion duration (24 h) were applied to offset the lowered reactivity
of aromatic amines and ensure a better degree of completion of
the reaction. Under the modified conditions, phenyl-substituted
acyclic or cyclic amines performed comparably well to furnish the
desired enaminone products (3u-3w), and the presence of a
bromo substituent did not substantially affect the yields (3x—3z).
An electron-rich (1,3-benzodioxolyl)pyrrolidine derivative was able
to undergo the anticipated reaction but in a lower yield (3aa).
Ring-fused heterocycles, such as 1-methyl-1,2,3,4-tetrahydroqui-
noline and julolidine, are also suitable starting materials to pro-
vide the corresponding products in reasonable yields (3bb, 3cc).
With ethyl acetate employed, aliphatic tri-n-hexylamine and
tri-n-propylamine could still convert into the desired products in
similar yields (3a, 3b, 3e-3g), and it was verified to be an excellent
solvent using tri-n-butylamine as the substrate (3q—3t).

The synthetic utility of the reaction was confirmed by the
large-scale preparation of 3b (Scheme 3). The reaction proceeded
well with 4 mmol tri-n-hexylamine applied, though in a slightly
lower yield compared with the 0.4 mmol scale reaction.

Scheme 3 Scale-up reaction’

"Hex "Bu F(CF,0),CF,CO5K (1b, 2.0 equiv.) "Hex "Bu
,‘\‘ 20)20F00; , 2.0 equiv. NHex/Ny\WCFz(OCFQ)ZF
Hex” MeCN (5 mL), 85 °C, 12 h I
2a,1.08 g 3b,083g
(4 mmol) 42%

? Reaction conditions: tri-n-hexylamine (2a, 4.0 mmol, 1.0 equiv.) and
PFO2HxA-K (1b, 8.0 mmol, 2.0 equiv.) were reacted in anhydrous acetoni-
trile (5 mL) at 85 °C for 12 h under an argon atmosphere.

In our published paper,m] we have demonstrated the genera-
tion of highly reactive carbonyl fluoride based on the decomposi-
tion of F(CF,0),CF,CO,M. Notwithstanding, it is far less sufficient
to unravel the reaction pathways with respect to tertiary amines.
To gain a better understanding of the mechanism, a series of con-
trol experiments were carried out (Scheme 4). When potassium
perfluorohexanoate (PFHxA-K) was used instead of PFO2HxA-K
(Scheme 4A), no apparent decomposition was observed. This
indicates that the PFECA salts are more thermally unstable than
PFCA salts, and that the decomposition products might serve as
key intermediates in the formation of enaminones. The decompo-
sition products were demonstrated to acylate 2-iodoaniline (4) to
access the corresponding amide 5, which suggests the generation

Scheme 4 Control experiments

A F(CF,0),CF,CO5K (1b, 0.8 mmol) "Hex "Bu
20)Lr2C0K (B, 0. "Hex/NyYCﬁ(OCFZ)ZF
MeCN (0.5 mL), 85 °C, 6 h it
"’}‘-lex "Bu 3b, 60%
_N -
"Hex
"CoF 11COK (0.8 "Hex "Bu
2a, 0.4 mmol 5F11CO2K (0.8 mmol) " /NN%F”
ex
MeCN (0.5 mL), 85 °C, 6 h s
0%
B) DME (1 mL), 80 °C, 5 h [ H
mL), s
F(CF,0),CF,COK NTCFﬂOCFz)?F
then 2-iodoaniline (4, 0.2 mmol) o
1b, 0.6 mmol rt,3h
5,91%
C) F
F
Me F(CF,0),CF,COK (1b, 0.6 mmol) o
N~ l\(le
Me EtOAc (1 mL), 80 °C, 24 h _N.___CF,(OCF,),F
o) Me
o
6, 0.2 mmol

7,41%
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Synthesis of trans-2-(Disubstituted-amino)alkenyl Polyoxyperfluoroalkyl Ketone

of polyoxyperfluoroacyl fluoride (R:COF) or anhydride [(RCO),0]
(Scheme 4B). Moreover, less electron-poor enaminone 6 was
readily converted into enaminedione 7 in the presence of 1b, and
thus it was postulated enamine moiety as a possible nucleophilic
component in terms of product formation (Scheme 4C). In other
words, tertiary amines may be initially oxidized to enamines which
are further acylated to the corresponding enaminones with re-
spect to the title reaction. The in situ generated electrophilic acyl
derivatives, including COF,, acyl fluorides and anhydrides, were
regarded as the most plausible oxidants and acylating agents.

The role of acyl derivatives was determined by further mech-
anistic studies (Table 3). With bis(trichloromethyl) carbonate (BTC)
and potassium fluoride applied as additives to simulate the com-
plete decomposition of PFO2HxA-K to the corresponding acylating
agents, the desired enaminone product 3b was observed by O
NMR monitoring, though in lower yields (Table 3, entries 1-3). By
reducing the redundant amount of KF, the presumable acyl fluo-
ride or anhydride alone was still capable of realizing the conver-
sion (Table 3, entries 4, 5) where acyl chloride failed (Table 3, en-
try 6), revealing that an excess of potassium fluoride may be reqg-
uisite. Additionally, the partial inhibition of the transformation in
the presence of an electron acceptor m-dinitrobenzene (m-DNB)
or a radical scavenger 2,2,6,6-tetramethylpiperidine 1-oxyl (TEM-

s Chin. J. Chem.

out from the solution upon aggregation to release another COF,
molecule. As carbonyl fluoride accumulates, it tends to bind to
weakly nucleophilic carboxylate A to afford the adduct E (Figure 1,
stage Il). Subsequent inter- or intramolecular fluoride transfer and
departure of fluoroformate ion lead to the formation of acyl

Table 3 Mechanistic investigations into the role of acyl derivatives’
F(CF,0),CF,CO.K (1b, x equiv.)

nzex By additives "Heszi(/;t(CFz(OCFz)zF
"Hex” MeCN (0.5 mL), 85°C, 6 h i
2a 3b

entry x(equiv.) additives (equiv.) yieldb/% notes

1 2.00 none 70 COF,/ReCOX + KF + :CF,

2° 1.33  BTC(0.45) + KF (3.33) 42 RrCOF + KF + KCI

3 1.60  BTC(0.27) + KF (2.00) 52 (RrCO),0 + KF + KCI

4° 1.33  BTC(0.45)+KF(1.33) 30 R:COF + KCl

5¢ 1.60 BTC (0.27) 28 (ReCO),0 + KCl

6 1.33 BTC (0.45) 0 R:COCI + KCI

7 2.00 m-DNB (3.00) 43 -

8 2.00 TEMPO (3.00) 45 -

PO) suggests an SET process within (Table 3, entries 1, 7, 8).

Given the above investigations in addition to reported obser-
vations,[na’lsa’zz'zsl a plausible mechanism of the reaction encom-
passing four main stages was accordingly proposed (Figure 1). In
terms of stage |, with the coordination assistance of solvent mol-
ecules, the potassium-bound perfluoroalkyl ether carboxylate 1
dissociates its anion A, which then decarboxylates to give a fluor-
inated carbanion B. Bearing an excellent perfluoroalkoxy leaving
group,[zsl B can undergo spontaneous cleavage of a series of C-O
bonds, yielding difluorocarbene, a varying amount of carbonyl
fluoride and trifluoromethoxide D. The combination of D with
potassium ion within 1 gives potassium fluoride that precipitates

“Reaction conditions: tri-n-hexylamine (2a, 0.4 mmol, 1.0 equiv.),
PFO2HxA-K (1b, as indicated) and additives (as indicated) were reacted in
anhydrous acetonitrile (0.5 mL) at 85 °C for 6 h under an argon atmos-
phere. ®The yield of 3b was determined by *°F NMR of the crude reaction
mixture using benzotrifluoride as the internal standard. ©Stoichiometric
amount of 1b, BTC and spray-dried potassium fluoride were used to have
the same amount of acylating agents and KF as that by complete decom-
position of PFO2HxA-K in entry 1. ?Stoichiometric amount of 1b, BTC and
spray-dried potassium fluoride were used to have the same amount of
acylating agents but no redundant KF as that by complete decomposition
of PFO2HxA-K in entry 1.

F(CF,0),CF,CO,K(solvent), ReCO,COF
1 (solvated) [F] F F ]
Stage | Stage Il
y solvent
Decomposition \ Generation of acyl
of PFO2HxA-K K fluoride and anhydride
[K(solvent)r,] .
B _ _ F transfer L,
CF30 F(CF,0),CF,CO, RFCO,CF,0 )4 )k
D A / E
G
(n-1) COF, COF, COF, Rg = F(CF,0),CF,—
KF
X solvent \‘
oy FCO, ----» COp+[F ]
F(CF,0),41CF,0 F(cFZO)n_1cF2@6F2 (RCO),0 RrCOF
c ; B 1 H
® 102 -
i{CF, ----= RsNCF,H, HCF, ete. RN (F1
2 R'R?N
R3
3 Yvo Y z g
o
R'R2N RIR2N 5/ z /
1R2
1 \L f R RZN)/,S RIRPN COF,
e ] 5 OR Stgge 1]
RFCOX Co + [ Bl - K X =F, ReCO, toriﬁ'da"on,o“
(Y=F) [F1] Y=F,Re ertiary amine
R'R?N

R'R2N
T\KRF §

J}( Stage IV
Acylation of enamine

Figure 1 Proposed reaction mechanism.
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fluoride H. Anhydride I may also be generated in the presence of
excess A. Thereafter in stage lll, the highly electron-poor acyl de-
rivatives (COF,, H and 1) dehygrogenate 2 possibly via an SET and
thence a hydrogen atom transfer (HAT) process, resulting in imin-
ium L. With the aid of simultaneously produced potassium fluo-
ride, L further deprotonates to provide enamine M, forming a
nucleophilic site 8 to nitrogen. Acylation of M then proceeds
readily with either H or | to afford the thermodynamic
trans-enaminone product 3 (Figure 1, stage IV).

Conclusions

In summary, we have developed a facile synthetic approach to
furnishing trans-2-(disubstituted-amino)alkenyl polyoxyperfluoro-
alkyl ketones from tertiary amines and PFECA salts featuring con-
secutive “—CF,0-" units. The reaction is applicable to broad sub-
strate scope, and a yield of up to 84% was observed. The reaction
mechanism was proposed involving the heat-promoted in situ
generation of COF,, polyoxyperfluoroacyl fluorides and anhydrides
which serve as key intermediates for the SET-based oxidation and
acylation of amines.

It is worth mentioning that the novel perfluoroether-modified
enaminone products are scarcely accessible by other methods,
and may be applied as promising precursors of bioactive com-
pounds and surfactants. Besides, as (hetero)difluoroacetates
(XCF,CO, ), PFECA salts may find their undeveloped use as a novel
class of difluorocarbene precursorsm] and for the construction of
—CF,CO,— segmentsm] in the future work.

Experimental

Typical procedure for the synthesis of enaminone 3b. To an
oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar
were charged tri-n-hexylamine (2a, 136 pL, 0.40 mmol, 1.0 equiv.),
F(CF,0),CF,CO,K (1b, 227 mg, 0.80 mmol, 2.0 equiv.) and anhy-
drous acetonitrile (0.5 mL) under an argon atmosphere. The reac-
tion was carried out upon vigorous stirring at 85 °C in an oil bath
for 6 h. After the reaction was completed, the resulting mixture
was cooled to room temperature and concentrated under re-
duced pressure. The crude residue was purified by flash column
chromatography (PE:EA = 50:1, V/V) to afford the pure product
3b as a yellow oil (119.5 mg, 60%).
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