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ABSTRACT: The defluorination of trifluoromethyl groups typically involves
breaking one or all three C—F bonds, while selectively cleaving exactly two -~ “cF,
C—F bonds presents a considerable challenge. In this work, we present a
method for the sequential defluorination of trifluoromethyl hydrazones under
photocatalytic conditions, which involves the specific breakage of two C—F
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bonds followed by thiolation to yield monofluorinated alkenes containing a
thiol group. Transforming trifluoromethyl-containing polyfluoroalkyl substances into fluorinated non-PFAS compounds holds

potential practical implications.

luorine exhibits unique electronic properties, such as a
small atomic radius and low polarizability, which allow
fluorinated groups to enhance the physicochemical properties
of organic molecules, such as improving the metabolic stability
and lipophilicity of drug molecules.' This enhancement has
made the development of methods for incorporating
fluorinated groups into molecular structures a critical focus
in organofluorine chemistry.” On the other hand, the
widespread use of well-established compounds containing
perfluoroalkyl groups has led to significant environmental
concerns. The European Union’s increasing regulatory
restrictions on PFAS (per- and poly fluoroalkyl-containing
substances) highlight the challenges in managing and disposing
of these compounds.” Developing a method to selectively
defluorinate molecules containing perfluoroalkyl groups could
yield unique fluorinated molecules. Such an achievement
would not only mark a significant advancement in the synthesis
of fluorinated compounds but also contribute to mitigating the
environmental pressures associated with the accumulation of
PFAS. Given the inclusion of CFj-containing compounds
within the category of PFAS,” the defluorinative functionaliza-
tion of the CF; moiety has garnered considerable attention,” as
it can transform these substances into valuable non-PFAS
alternatives. However, most research efforts focus on
manipulating either a single C—F bond or all three C—F
bonds within the CF; group.® Selectively breaking two C—F
bonds for functionalization presents a significant challenge, as
the strength of the C—F bond decreases with progressive
defluorination,” often resulting in complete defluorination
rather than the desired selective modification (Scheme 1A).
Limited research has been conducted on the functionaliza-
tion of CF; groups through the cleavage of two C—F bonds.
Typically, the methods employed involve the use of reactive
substrates, including CF;-alkenes,” CF,CH,—ketones,” and
Ar—CHBr-CF; compounds® (Scheme 1B, eq a). CF;-alkenes
are susceptible to nucleophilic or radical attack, leading to the
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formation of a carbanion that readily undergoes pS-fluoride
elimination, which is similar to an Sy2’ process.6 The CH,
segment in CF;CH,—ketones exhibits notable acidity, allowing
for facile deprotonation and subsequent S-fluoride elimina-
tion.” In the case of Ar—CHBr-CF,, the C—Br bond’s high
reactivity facilitates the oxidation of a transition metal, forming
a Br-[M]-C—CF;intermediate that is predisposed to S-fluoride
elimination.® All of these elimination processes can easily
cleave a C—F bond, which is a traditional approach for
breaking such bonds and not particularly challenging in the
chemistry of C—F bond functionalization. Recently, Wang,
Houk, and co-workers reported a dihydrodefluorination of
trifluoroacetamides by selectively breaking two C—F bonds
(Scheme 1B, eq b1).” The key to this method lies in a two-
stage process, where each stage involves a spin-center shift step
to achieve controlled C—F bond cleavage. This strategy not
only effectively prevents overdefluorination but also enables
the rapid and efficient synthesis of highly functionalized
monofluorinated products from inexpensive CF; sources.
Additionally, CF;-diazo compounds have been shown to
undergo dual C—F bond cleavages.'’ Zhou’s group described
a Rh(III)-catalyzed defluorinative [4 + 2] annulation for
synthesizing 1,3,4-substituted isoquinolines (Scheme 1B,
b2).'%* Similarly, Li and co-workers reported a Ru-catalyzed
redox-neutral [4 + 2] cyclization of 2-arylbenzimidazoles with
a-trifluoromethyl-a-diazoketones via sequential C—H activa-
tion and defluorinative annulation (Scheme 1B, b3).'”
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Scheme 1. Functionalizations of C—F Bonds in CF; Groups
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We have been interested in the introduction of fluorinated
groups into organic molecules, typically relying on the use of
fluorinated reagents."' Recently, we explored the synthetic
potential of CF;-hydrazones, which are widely used as CF;-
carbene precursors.'” Surprisingly, we discovered that CFj-
hydrazones can readily undergo double C—F bond cleavage
followed by thiolation to yield monofluoroalkenes under
photocatalytic conditions (Scheme 1C). This protocol
efficiently incorporates a thiol group and constructs mono-
fluoroolefins with high E/Z selectivity. Mechanistic studies
reveal that the high E selectivity is attributed to visible light
irradiation.

Photocatalysis has emerged as a potent methodology in the
realm of organic synthesis. ° Following a systematic screening
of the photocatalytic dual-defluorinative thiolation of a
trifluoromethyl hydrazone with thiols (see Supporting
Information), optimal reaction conditions were established.
With the optimal reaction conditions established, we
proceeded to explore the substrate scope for the photocatalytic
dual-defluorination thiolation of trifluoromethyl hydrazones.

As illustrated in Scheme 2, this protocol demonstrates broad
applicability across a diverse array of trifluoromethyl
hydrazones and thiols. Notably, when employing thiols
containing a 3-CO,Me group, the reactions delivered the
desired products with high E/Z selectivity and in moderate to
good yields (3—2 to 3—21). The electronic nature of the
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Scheme 2. Substrate Scope of the Photocatalyzed Dual-
Defluorination Thiolation of Trifluoromethyl Hydrazones®
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“The reaction was performed under air atmosphere; the yleld and the
E/Z ratio were determined by '>F NMR spectroscopy. “The reaction
was performed on a S mmol (1.78 g) scale of the substrate. The yield
and the E/Z ratio were determined by '"F NMR spectroscopy.
“Reaction conditions: 1 (0.2 mmol, 1 equiv), 2 (0.4 mmol, 2 equiv),
Cs,CO; (0.4 mmol, 2 equiv), and Ru(phen);(PF), (2 mol %) in
NMP (2 mL) under 465 nm blue LED irradiation for 21 h at rt under
a N, atmosphere. Isolated yields are shown. The E/Z ratios were
determined by analyzing the reaction mixtures using '“F NMR
spectroscopy.

substituents on CF;-hydrazones did not significantly influence
the E/Z ratio; whether the hydrazones were electron-
withdrawing, electron-neutral, or electron-donating, the
preference for E-olefins as the major products remained
consistent. However, it was observed that electron-with-
drawing groups on the hydrazone substrates tended to result
in slightly diminished yields. The structure of product 3—21
was confirmed by X-ray diffraction analysis.'* Besides 3-
CO,Me phenyl thiol, other aryl thiols also showed reactivity in
this process (3—23 to 3—34). Notably, free amino and
hydroxyl groups (3—32 and 3—33) can be tolerated under
these conditions, which may allow for convenient structural
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modifications. Alkyl thiols are also reactive, although they
resulted in lower yields and E/Z ratios (3—35 to 3—38). In
contrast, alkenyl hydrazones were unreactive toward this
process, with no desired product formation observed (3—
39). Alkyl hydrazones cannot be converted into desired
products (3—40). Even when the reaction was performed
under an air atmosphere, it still proceeded smoothly, albeit
with a lower yield and reduced E/Z selectivity (3—2). This
indicates that while nitrogen protection optimizes the reaction
outcome, it is not strictly necessary for the reaction to proceed.
Upon scaling up to a gram scale, a good yield and excellent E/
Z selectivity were still achieved (3—3), further demonstrating
the robustness and versatility of this approach. Replacing the
CF; group with the HCF, group has the potential to produce a
thiol-containing alkene without a fluorine substituent. How-
ever, using HCF,-hydrazone, derived from PhCOCF,H
ketone, as the substrate in a reaction with 3-MeO,CC4H,SH
thiol, resulted in a complex mixture, and the formation of the
desired thiol-containing alkene was not clearly observed.

This dual-defluorination thiolation protocol not only
achieves the challenging task of sequentially cleaving two
strong C—F bonds but also introduces another functional
group, representing a significant discovery in organofluorine
chemistry. Additionally, from a synthetic standpoint, this
protocol offers an eflicient route for obtaining thiol-containing
monofluoroolefins, the synthesis of which has received
increasing attention due to their potential uses in biological
chemistry.15 For example, Yang, Xia, and co-workers reported
an efficient photocatalytic thiolation of gem-difluoroolefins
with thiols, which suffers from low E/Z selectivity.>* The Shi
group described visible-light-promoted thiolation of gem-
difluoroolefins with sodium sulfinates, primarily producing E-
olefins.'*® Recently, the Xue group introduced a thiolation via
convergent paired electrolysis, mainly yielding Z-olefins. 1sh
Despite their efficiency, all of these methods use non-PFAS
compounds such as gem-difluoroolefins as starting materials. In
contrast, our approach begins with CF;-containing com-
pounds, which are classified as PFAS and are known for
their environmental concerns.” By transforming these PFAS
materials into valuable non-PFAS products, we not only
expand synthetic possibilities but also address environmental
challenges. This conversion of PFAS into useful non-PFAS
compounds offers several advantages, including enhanced
synthetic versatility and a reduction in environmental impact.
The ability to sequentially break two C—F bonds and convert
PFAS into useful non-PFAS compounds makes our strategy
particularly attractive.

It is widely recognized that hydrazones typically act as
precursors to diazo compounds.'**'® We then explored the
possibility that diazo compounds might be the actual reactive
intermediates in the dual-defluorination thiolation reaction.
However, the reaction using a diazo compound directly as the
substrate resulted in low yields and exhibited reversed E/Z
selectivity (Scheme 3, eq A), suggesting that the diazo pathway
is not the primary route for this transformation. Upon
observing low yields of the desired monofluoroolefin, the
presence of gem-difluoroolefin (4—36) in the reaction mixture
was noted (eq Bl). While gem-difluoroolefins were rarely
observed during most cases of substrate scope exploration,
their appearance led us to hypothesize that gem-difluoroolefin
may play a role in the transformation. Under basic conditions
without light irradiation, gem-difluoroolefin can react with the
thiol to yield a monofluoroolefin in high yields, exhibiting

5277

Scheme 3. Experimental Evidence”
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surprisingly reversed E/Z selectivity (eq B2). Notably, the E/Z
mixture, initially dominated by the Z isomer, could undergo
configurational inversion under hv irradiation to predom-
inantly form the E isomer (eq B3), which aligns with the
primary product configuration observed under standard
reaction conditions. These findings show that gem-difluor-
oolefin plays a critical role as an intermediate, with its
formation and subsequent reactions with thiols being pivotal
steps in the process. Control experiments were also conducted
(eq C). Light irradiation is essential for this dual-defluorination
thiolation, as no product forms in its absence. While the
desired product can still be obtained without a photocatalyst, it
resulted in a dramatically lower yield and poor E/Z selectivity
(eq C). The conversion observed without a photocatalyst is
likely due to hv light irradiation facilitating the generation of
RS- radicals from thiols, thereby enabling the necessary
transformations. The presence of a radical scavenger, 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO), led to the almost
complete inhibition of the desired reaction, indicating that a
radical process is operative (eq D).

Based on the above results, we propose the reaction
mechanism shown in Scheme 4. Hydrazone (1) is easily
deprotonated by a base to form carbanion (Int 1), which is
then oxidized by the photoexcited complex [*Ru(phen);*"] to
form radical Int 2. This radical readily abstracts a hydrogen
from the hydrogen source, a thiol, to provide diazo compound
Int 3. Int 3 is unstable and readily decomposes to release
nitrogen gas and form radical Int 4. Int 4 is then reduced by
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Scheme 4. Proposed Reaction Mechanism
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the in situ generated [Ru(phen);'] to give anion Int S. f-
fluoride elimination of this anion delivers gem-difluoroolefins
4."” gem-Difluoroolefin 4 is reactive toward thiols under basic
conditions and their reaction yields anions Int 6. In this
intermediate, two conformations exist. One suffers from strong
electronic repulsion between the two fluorine atoms and the
aromatic rings, making it disfavored. The other conformation
experiences less electronic repulsion and thus becomes
favored."*® f-fluoride elimination from this favored conforma-
tion affords Z-isomer 3’, which is thermodynamically unstable.
This isomer undergoes E/Z configurational inversion under hv
irradiation to give thermodynamically stable E-isomer 3.
Further mechanistic studies supporting the proposed reaction
pathway, including evidence against S-fluoride elimination
from Intl, fluorescence quenching experiments, and indirect
support for the formation of Int3, are provided in the
Supporting Information.

In summary, we have developed an efficient photocatalytic
dual-defluorination thiolation of hydrazones with thiols to
provide thiol-containing monofluoroolefins with yields and E/
Z selectivities up to high levels. The sequential cleavage of two
C—F bonds and the incorporation of new functionality
represent a significant advancement in organofluorine chem-
istry. Notably, the protocol also demonstrates the potential to
convert PFAS into useful non-PFAS derivatives, highlighting
its practical value. Our approach thus opens new avenues for
the synthesis of functionalized fluorinated molecules with
broad applications.
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