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A protocol was developed for the large-scale preparation (nearly 200 g per batch) of (CF,S),C=S. The synthesis of
gem-bis(trifluoromethylthio)alkenes was achieved through the Barton—Kellogg reaction, without the involvement of trivalent
phosphines. With slight modifications to the reaction conditions, the synthesis of gem-bis(trifluoromethylthio)cyclopropanes, which
are difficult to obtain by other methods, can be realized. Due to the large steric hindrance of the trifluoromethylthio group, the CF;S
group may be positioned close to the trans-substituent rather than the cis-substituent in cyclopropanes, as confirmed by single-crystal
X-ray analysis, contributing to unique NMR structural characteristics. Further investigation into the reaction mechanism revealed the
unique reactivity of the double bond in gem-bis(trifluoromethylthio)alkenes.

bis(trifluoromethylthio)methylene group, trifluoromethylthio, Barton—Kellogg olefination, cyclopropanation, fluorine

two SCF; groups on the same carbon atom, which may have

Due to the unique electronic properties of fluorine, such as its a great impact on the physicochemical properties and

high electronegativity and small atomic radius, its incorpo- bioactivity of the compounds. However, the installation of a
ration can significantly alter the physicochemical properties of functionality containing geminal bis-trifluoromethylthio units
organic molecules, including enhancing the lipophilicity and remains a significant challenge.

metabolic stability of biologically active compounds.'™ As a The reported methods for constructing a bis-
result, fluorinated compounds have found extensive apg)lica- (trifluoromethylthio)methylene group generally require a
tions in various areas, such as medicine and pesticides.” " The sequential double trifluoromethylthiolation process, where
trifluoromethylthio group (CF;S) has been recognized as a the two CF,S units are installed one after the other. The
valuable fluorinated structural unit, characterized by its strong bis(trifluoromethylthio)methylene functionality can exist as a

lipophilicity nature (Hansch parameter 7 = 1.44), highly single-bonded fragment (—(CF;S$),C—) in alkanes or as a
electron-withdrawing properties (6,, = 0.4, 6, = 0.5) and large double-bonded fragment ((CF;$),C=) in alkenes. Several

steric hindrance.”®* Numerous CF;S-containing biologically research groups have explored methods for forming —
active “.10.13511185 he.we .beengillesveloped, which may Potentially (CF;S),C— alkanes. Billard and co-workers constructed a
find clinical applications, and CF;S-containing agro- series of a,a-bis(trifluoromethylthio)ketones via double

chemicals like Flupentiofenox and Vaniliprole have also
emerged.3 Therefore, methods of introducing mono trifluor-
omethylthio group into or§anic compounds have been the
focus of extensive research,'**’ leading to the development of
various trifluoromethylation reagents. These include electro- December 27, 2024
philic reagents like N-SCF;**~*” and O-SCF;*** types, as well January 29, 2025

as nucleophilic reagents such as AgSCF;,”* CuSCF,,”" and January 31, 2025
Me,NSCF;.” In view of the unique structural characteristics of Bebruary 6, 2025
SCF; group, it is possible to construct bulkier di-

(trifluoromethylthio)methylene building block by stacking

trifluoromethylthiolation of methyl ketones and enol silyl
ethers with the highly effective electrophilic reagent TsN-
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Scheme 1. Installation of a Bis(trifluoromethylthio)-methylene Group

Previous work: stepwise installation of two CF3S units
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Scheme 2. Two Routes for the Synthesis of (CF;S),C=S

Route 1: Low yield and difficult to scale up
Sg
m-xylene
70 °C to reflux

PhsP*CF,CO,
150 mmol

Route 2: Easy to scale up

CuCl (5 mol)
CF.50.Na —PNaP (10 mol)
39028 T on N

5 mol

(Me)SCF; (Scheme 1A, eqs 1 and 2).*° Rueping’s group
demonstrated the combined use of another efficient electro-
philic CF,S-reagent (PhthSCF;) and a nucleophilic CF;S-
reagent (CuSCF;) for the installation of the —(CF;S),C—
group (Scheme 1A, eq 3).”* Qing et al. achieved an efficient
deoxygenation of aldehydes for double trifluoromethylthiola-
tion with AgSCF; (Scheme 1A, eq 4).** For the construction
of alkenes, a very low yield was obtained (Scheme 1A, eq 5),”
or a highly reactive reagent, CF;SC, has to be used (Scheme
1A, eq 6).”° Additionally, only one example was investigated in
each method. In all of the above reactions, the two CF;S units
are incorporated sequentially. The installation of the first CF;S
unit might reduce the resulting molecule’s reactivity, hindering
the introduction of the second unit. To overcome this obstacle,
substrates or reagents must be highly reactive, or reaction
conditions must be particularly harsh. However, these factors
can lead to problems with substrate compatibility.

It is well-known that the Barton—Kellogg olefination is a
coupling reaction between a diazo compound and a thioketone

CF,=S

CuSCF

CsF (10 mol%)

CH,

CSCl, (1.35 mol)

3
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Cly,-72°Ctort. F,CS~ “SCF,4

obtained as a DCM solution
17% overall "°F NMR yield

S

F,CS”~ “SCFs

0.81 mol, 199.3 g
32% overall isolated yield

CH3CN

for the synthesis of steric alkenes.””~** This olefination process

normally requires the presence of a trivalent phosphine, which
acts as a nucleophile to open the three-membered thiirane ring,
facilitating the removal of the sulfur atom and leading to the
formation of the alkene. If we aim to utilize Barton—Kellogg
reaction, the effective transformation for the synthesis of
olefins with large steric hindrance, to synthesize di-
(trifluoromethylthio)olefins, it is necessary to obtain the raw
material di(trifluoromethyl) thiocarbonate ((CF,;S),C=S).
However, although (CF;S),C=S has been reported,*"*” its
large-scale synthesis and its synthetic applications*’ remained
largely unexplored. We have successfully achieved a hundred-
gram-scale synthesis of (CF,;S),C=S, explored its use in
Barton—Kellogg olefination and subsequent cyclopropanation,
and developed a new method for the synthesis of bulky,
sterically hindered molecules containing di-
(trifluoromethylthio)methylene fragment (Scheme 1, This
work).
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We have been interested in the introduction of CF;S
groups.*”*> Previously, we discovered that difluorocarbene
can be captured by elemental sulfur to form thiocarbonyl
fluoride (CF,=S$)."*"*° As a result, (F,CS),C=S can be
generated by the transformation of CF,=S. First, the CF,=S$
gas, generated by the reaction of difluorocarbene with
elemental sulfur, was transferred into a CH,Cl, solution
containing a catalytic amount of CsF. CF,=S reacts with CsF
to produce the CF;S™ anion. This anion then sequentially
attacks CF,=S twice, yielding (CF;S),C=S and releasing F~
ions.*” These F~ ions can further react with CF,=S to form
CF,S™ anions (Scheme 2, Route 1). While this route is
effective, it has a low yield and is difficult to scale up.
Additionally, transferring the CF,=S gas is cumbersome, and
the final product, (CF,S),C=S, is only obtained in a CH,Cl,
solution. Therefore, an alternative approach was sought. The
synthesis of (CF;S),C=S has been reported by the Clark
group, utilizing the reaction of CuSCF; with CCL=S."!
According to Clark’s protocol, (CF;S),C=S can be obtained
as a CH;CN solution through distillation. After synthesizing
CuSCF; following the method of Yang and Vicic," we
subsequently applied Clark’s protocol, which resulted in high
F NMR vyields of (CF,S),C=S. However, direct distillation
on a large scale resulted in very poor yields, likely due to the
decomposition of (CF,S),C=S via its electrophilic attack on
CH;CN at the high distillation temperatures. To address this
issue, we modified the workup procedure. As detailed in the
Supporting Information, the (CF;S),C=S solution in CH;CN
was first distilled out of the reaction mixture at room
temperature under reduced pressure. Water was then added
to the CH;CN solution, resulting in the formation of two
phases with CH;CN partitioning into the upper aqueous
phase, which was decanted, leaving crude (CF;S),C=S as a
liquid at the bottom layer. Further distillation yielded the pure
product. While the overall yield is still not high, the process
demonstrates greater scalability.

After successfully achieving the large synthesis of
(CE,;S),C=S, we investigated its use in Barton—Kellogg
olefination. Initially, we focused on the conversion of
monosubstituted diazo compounds with relatively low steric
hindrance and higher reactivity. Subsequently, we investigated
the transformation of bulkier and less reactive disubstituted
diazo compounds. Due to the instability of PhnCH=N,, its
Barton—Kellogg reaction was investigated in detail using
benzaldehyde sulfonylhydrazone 1a as the substrate.

During the optimization of the conditions for the reaction of
hydrazone 1la, a precursor of diazo PhCH=N,, with
(CF;S),C=S, we found that two different products could be
produced, including thiirane 2a and olefin 3a, depending upon
the reaction conditions (Table 1). Notably, the absence of a
trivalent phosphine could also lead to conversion of thiirane 2a
into the olefin product 3a, probably with the promotion of
bulky di(trifluoromethylthio)methylene. The first attempt at
the reaction of la with (CF,;S),C=S using NaH as the base
for deprotonation of 1a failed to yield any product. However,
both substrate la and (CF;S),C=S were completely
decomposed (Table 1, entry 1). We hypothesized that the
anion PhCH=NN"SO,Ar, generated by deprotonation, may
act as a nucleophile to attack (CF;S),C=S, which led to the
complete consumption of both la and (CF;S),C=S, rather
than forming the desired diazo compound, PhCH=N,. We
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Table 1. Optimization of the Barton—Kellogg Olefination®

H - 1R

NS ‘ NaH S SCFs

PhJ o " (CRSRems WPhA\SSCiZS : P SCFs

1a 2a 3a

entry R solvent yield of 2a/3a (%)“

¥ 4-CH, DCE 0/0

2° 4-CH, DCE 80/0

34 H PhCH, 3/9

47 4-CH, PhCH, 3/5

54 2,4,6-(CH;)3 PhCH, 24/24

6? 4-OCH, PhCH, 3/4

74 4-Br PhCH, 18/7

8 4-NO, PhCH, 18/7

94 4-CF,4 PhCH, 44/21

104 2-CF, PhCH, 58/36

114 2-CF,4 DCE 0/62

124 2-CF;4 dioxane 36/17

134 2-CF,4 THF 0/28

147 2-CF, EA 0/19

154 2-CF,4 CH,CN 0/0

16° 2-CF, PhCH, 46/38

17 2-CF, PhCH, 0/91

“Yields were determined by the analysis of the crude F NMR
spectroscopy using PhOCF; as an internal standard. “1a (0.20 mmol,
1.0 equiv) and NaH (0.24 mmol, 1.2 equiv) and (CF;S),C=S (0.22
mmol, 1.1 equiv) in DCE (2.0 mL), 80 °C for 3 h. “1a (0.6 mmol, 3.0
equiv) and NaH (0.66 mmol, 3.3 equiv) in PhCH; (2.0 mL) under a
N, atmosphere at 70 °C for 1 h. Then (CF;S),C=S (0.2 mmol, 1.0
equiv) was added. The mixture was stirred at rt for 2 h. “The reaction
temperature was 80 °C. “The reaction temperature was 90 °C. IThe
reaction temperature was 100 °C. $Reaction conditions: la (0.20
mmol, 1.0 equiv), NaH (0.40 mmol, 2.0 equiv) and (CF,S),C=S
(0.24 mmol, 1.2 equiv) in a solvent (2.0 mL) at a N, atmosphere for 3
h.

then preheated the mixture of 1a and NaH for a period of time
to ensure complete conversion of la into PhCH=N, before
adding (CF;S),C=S, which then provided thiirane 2a in a
high yield (Table 1, entry 2). However, this stepwise process
was not generally acceptable.

We speculated that the Ar substituents on PhCH=
NNT~SO,Ar might influence the nucleophilicity of this anion,
and that a suitable substituent may facilitate its conversion to
PhCH=N, rather than promoting its nucleophilic attack on
(CF,S),C=S. Therefore, we examined a series of substituents
for the one-step reaction between 1a and (CF,S),C=S (Table
1, entries 3—10). The nature of the substituents had a
significant impact on the reaction outcome. Electron-neutral or
-donating aryl substituents led to low reaction efficiency (Table
1, entries 3—6), likely because the high nucleophilicity of the
PhCH=NNT"SO,Ar anion favored direct attack on
(CF;S8),C=S. Interestingly, bulky tosylhydrazones showed
some conversion despite the electron-rich nature of the aryl
group (Table 1, entry S), probably due to steric hindrance
suppressing the nucleophilic attack of PhCH=NN"SO,Ar on
(CF;S),C=S. Electron-withdrawing tosylhydrazones exhibited
improved reaction efficiency (Table 1, entries 7—10), as the
reduced nucleophilicity of the PhCH=NN"SO,Ar anion
minimized its attack on (CF;$),C=S, promoting its
conversion to PhnCH=N,. Among these, the highest reaction
efficiency was observed with a 2-trifluoromethyl substituent
(Table 1, entry 10)."%*

https://doi.org/10.1021/jacsau.4c01270
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Scheme 3. Barton—Kellogg Olefination of Hydrazones with (CF,S),C=S"
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- SCF3 mSCFs mSCFs mSCFs
SCF SCF F
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3j, 83% 3k, 66%° 31, 61%:2 3m, 64%7
SCF3  O,N SCF;  FsC SCF X SCF
A 3 2 X 3 3 AN 3 Ph/\/\( 3
CNSCFs mF3 SCF; SCF;4
3n, 75%? 30, 62%? 3p, 78% 39, 55%
'REH CH """"
o S SCF; | 3
Ph\m/SCF3th/SCF3 NN : \«SCFs
2 SCFy;
F3CS F3CS N : SCF,4
3r, 67% 3s, 80% 3t, 57%° : 3w, 68%
- SCFs L CHy CH,
Me 0 SCF, f Ny SCFs /@2\(%%
| SCF SCF
\O:-Pro i Br °  MeO :
3u, 70% : 3x, 82% 3y, 55%
N SCF3 E CHj CH;
: SCF
WO SCFs /©)\/ ¢ OZNWSCFS
o | Mes SCF3 SCF4
7% | 3z, 80% 3aa, 59%°
CH3 Ph Ph Bu
/@)\/805’ B SCF3 ©)\/SCF3 ©)\(SCF3
N SCF; SCF, SCF;4 SCF;4
3ab, 68%° 3ac, 65% 3ad, 82% 3ae, 61%
CF, )
SCF ]
SCF
Br ® SCF,
3af, 50% 3ag, 83% 3ah, 72%

X-ray structure of 3ag

“K3PO, (1.0 mmol, 2.0 equiv) was used instead of NaH. YReaction conditions: Substrate 1 (0.5 mmol, 1.0 equiv), (CF;S),C=S (0.6 mmol, 1.2
equiv), NaH (1.0 mmol, 2.0 equiv), PhCH; (5.0 mL), N, 100 °C, 8 h (R = H) or 30 h (R # H).

Next, the effects of solvent and temperature on this reaction
were systematically studied (Table 1, entries 10—17). It was
found that increasing solvent polarity reduced the efficiency of
the olefination process (Table 1, entries 10—15). Notably, no
product was obtained when acetonitrile was used as the solvent
(Table 1, entry 15), likely due to its high polarity stabilizing

the PhCH=NN"SO,Ar anion, facilitating its dissolution, and
increasing the likelihood of direct attack on (CF;S),C=S.
Furthermore, a higher reaction temperature led to a significant
increase in the olefination yield (Table 1, entry 17), probably

because thiirane 2a readily undergoes desulfurization with the

1042 https://doi.org/10.1021/jacsau.4c01270
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Scheme 4. Barton—Kellogg Olefination of Diazo Compounds with (CE,$),C=8"

R'020>: (1) CHyClp, it,3h  ROG  SCF3
N, + (F4CS),C=§ —————————> =
K0 (FCS), (2) neat, 120°C, 2 h K ScF,
5 6
CO,Et
CO,Et 2 - CO,Et O CO,Me
| SCFs A 3 - SCF3 - SCF3
SCF
SCFy ¢ SCF, O SCF,
6a, 92% 6b, 74% 6c, 64% 6d, 56%
CO,Et CO,Me CO,Me CO,Et
X SCF3; /@)\KSCFs ©\)\/SCF3 /@)\/SCFS
SCF
£ SCFs al 3 gy SCFs . SCF,
6e, 74%? 6f, 84% 69, 95% 6h, 82%
CO,Et CO,Et CO,Et CO,Et
/@)\/SCH /@)\/SC& MeOWSCFg /@)\/SCH
SCF SCF SCF. SCF
I 3 EtO 5 MeO 3 Mes 3
6i, 93% 6j, 83%2° 6k, 87% 61, 99%
CO,Et CO,Me CO,Et CO,Me
Ny SCFs /@)\/SC% /@)\/SCFS FstSCFs
SCF SCF
OoN *Me0,C *NC SCFs SCFs
6m, 90%° 6n, 90%° 60, 91%? 6p, 84%°
GOZE COLEt Cco,Pr F3CS‘ SCFs
@)\/SCH sﬁ)\/SCFa . SCFs o
N SCF; = SCF;4 SCF3 0o
6q, 83%° 6r, 65%” 6s, 68% 6t, 97%2
CO,Et
Ny SCFs P(0)(OCHj)
o) SCF3 @/\/SC%
P SCFs
r 0
6u, 72%° 6v, 88%
EtO,C SCF3 CO,Et CO,Et
= SCF3 SCF
X 3
@—HSCF3 WM A
SCF; O SCFy
6w, 63% 6x, 35% 6y, 0

“The reaction temperature was 40 °C for the first step. ®The reaction time for the second step was 4 h. “The reaction time for the second step was
3 h. “Reaction conditions: Substrate 5 (0.5 mmol, 1.0 equiv), (CF,S),C=S (0.6 mmol, 1.2 equiv), DCM (5.0 mL), an air atmosphere, r.t., 3 h;
DCM was removed by concentration under vacuum and then the residue was heated at 120 °C under air atmosphere for 2 h.

promotion of bulky di(trifluoromethylthio)methylene under
these conditions (Table 1, entry 17 vs 16).

After determining the optimal reaction conditions (Table 1,
entry 17), we conducted a detailed investigation into the
substrate scope of the Barton—Kellogg olefination between
(CF;S),C=S and hydrazones, serving as precursors of reactive
diazo compounds (Scheme 3). The results demonstrated that
the reaction exhibits broad compatibility. For benzaldehyde
hydrazones, the electronic effects of substituents appeared to
have some influence. Substrates with electron-neutral and
electron-donating groups were smoothly converted. However,
for electron-deficient substrates, the reaction was less efficient
with NaH as the base and required K;PO, as a substitute.
Although substrates with strong electron-withdrawing groups
could also be converted, the desired products were obtained in
lower yields (31—3p). In addition to benzaldehyde hydrazones,
vinyl aldehyde hydrazones were also compatible with this
reaction (3q). The reaction was successful for substrates
substituted with heterocycles such as furan (3r), thiophene
(3s), and quinoline (3t). Derivatives of biologically active
molecules, such as menthol (3u) and citronellol (3v), were
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fully compatible with the reaction, indicating potential
applications in modifying naturally active structures. Beyond
benzaldehyde hydrazones, ketone hydrazones also participated
well in the reaction (3w—3ah). However, due to their lower
reactivity, the reaction required an extended time (30 h) to
complete. Acetophenone hydrazones could all be transformed
smoothly, regardless of whether electron-donating and
electron-withdrawing substitutions were present (3w—3ab).
Additionally, substrates with significant steric hindrance (3ac—
3af) and cyclic ketone hydrazones (3ag, 3ah) were efficiently
converted. A single-crystal structure of product 3ag was
successfully obtained, confirming the product structure.”’ The
crystal structure reveals that the olefin structure is not planar,
with the two trifluoromethyl groups positioned away from each
other. These results indicate the significance of the bulky steric
effects of the gem-di(trifluoromethylthio)alkene moiety.

Next, we further investigated the Barton—Kellogg olefination
of stable and more steric diazo compounds containing an ester
group with (CF,S),C=S. Fortunately, the reaction proceeded
efficiently in DCM at room temperature to yield thiiranes,
while, as with hydrazones, a higher temperature was required
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Scheme 5. Gram-Scale Reactions and Derivatizations

(a) Gram-scale synthesis of product 3b

NNHTfs ; -
/©/\ (F4CS),C=S Optimal Conditions t
B

1b (10 mmol)

(b) Gram-scale synthesis of product 6a

SCF
u 3
3b (2.70 g, 75%)

CO,Et
x_SCF;

Optimal Conditions
@COZ t + (FsCS),C=S —>

5a (10 mmol)

+ Sg

SCF,

6a(2.22g,59%) (0.10 g, 31%)

(c) Electron-deficient property of alkenyl group caused by SCFj3 units

NaBH, (3.0 equiv.)

x._SCF3

SCF,4

CH30H, r.t.
3b, 1.0 mmol 3b,, 86%
(d) Harsh hydrolysis condition because of steric hindrance
O,Et CO,H
©)\(sca KOH (x equiv.) X SCF3
CH30H, 60 °C
SCF3 SCF3
6a, 1.0 mmol 6a,
X 9F NMR vyield (isolated yield)
2.0 26%
3.0 44%
4.0 65% (59%)

for the desulfurization of thiirane to produce olefins. A detailed
investigation into the substrate scope of this Barton—Kellogg
olefination was conducted (Scheme 4). Although electron-rich,
-neutral, and -deficient aryl diazo compounds could all be
smoothly converted (6a—6p), highly electron-deficient sub-
strates required a slightly higher temperature for the formation
of thiirane (6m—6p), indicating that substituent electronic
effects have impact on this process. Heterocyclic substrates,
such as those substituted with pyridine (6q) or thiophene (6r),
also participated successfully. The diazo compound containing
a bulky ester group was well converted (6s), and cyclic
substrates also showed high reactivity (6t). Substrates
containing a bioactive vitamin E structure (6u) were fully
compatible, highlighting the potential application of this
process in biological chemistry. In addition to ester
substituents, other electron-withdrawing groups necessary for
the stabilization of diazo compounds, such as phosphonate
substituents, also enabled smooth conversion of the corre-
sponding substrates (6v). Beyond aryl diazo compounds, alkyl-
substituted substrates were compatible as well (6w—6x).
Unfortunately, for diazo compound substituted with two
strong electron-withdrawing groups, its reactivity was too low,
and the reaction did not proceed (6y).

After successfully completing the substrate scope study, we
examined the scalability of the reaction (Scheme S). The
results show that the Barton—Kellogg olefination exhibits
excellent scalability (eqs. a and b), indicating potential
synthetic value. Elemental sulfur produced in the reaction
was isolated (eq b), which supports the desulfurization of
thiirane 2 to form the olefin. On the other hand, derivatization
experiments show that gem-di(trifluoromethylthio) alkenes
show considerable stability. Trisubstituted alkene 3b is
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resistant to oxidation by m-CPBA, bromination by Br, or
attack by Grignard reagent. It can only be reduced by less
steric hindered reducing agent NaBH, (eq c), showing the
electron-deficient nature of the alkenyl group. Tetrasubstituted
alkene 6a is more resistant, showing difficulty in reduction by
NaBH,. The conjugated ester group in 6a is relatively inert,
resisting nucleophilic reaction with a Grignard reagent or
ammonia, and requiring heating and a large excess of KOH for
complete hydrolysis (eq d). The results collectively show that
the substitution of two trifluoromethylthio groups causes a
significant increase in steric hindrance and a substantial
decrease in molecular reactivity.

Although some ordinary derivatizations are difficult to apply
to gem-di(triftuoromethylthio) alkenes, we speculated that
diazo compounds, as common carbene precursors, might
produce highly active carbene species in the reaction, which
may undergo cyclopropanation with the double bond in
bis(trifluoromethylthio)alkenes to give cyclopropanation prod-
ucts. However, previous research has seldom explored this
process, despite the successful formation of highly crowded
alkene structures in the Barton—Kellogg reaction, where
excessive steric hindrance may hinder the cyclopropanation
process.”’~*" Notably, there was one paper describing the
formation of a side product, tetrafluorocyclopropane, which
was formed in a Barton—Kellogg-type reaction of less hindered
difluorocarbene with thioesters.”’ The efficiency is quite low,
but its formation suggests that appropriate steric effects may
facilitate cyclopropanation following the Barton—Kellogg
reaction.

Based on the experimental results and literature reports, we
assumed that using an excess of less hindered and more
reactive ArCH=N, in the Barton—Kellogg olefination could
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enable the olefination product to further react with ArCH=
N,, potentially yielding a bis(trifluoromethylthio) cyclo-
propane product. Therefore, we used an excess of benzalde-
hyde sulfonylhydrazone 1a as the reaction substrate to screen
the cyclopropanation conditions.

Fortunately, it can be found that by increasing the loading of
la and extending the reaction time, cyclopropane 4a was
obtained, with high trans-stereoselectivity observed. First, the
screening of solvents showed that although cyclopropanation
efficiency was slightly better in THF or DCE (Table 2, entries

Table 2. Optimization of the Cyclopropanation®

2

N - NaH SCF, CF3S_ SCF;4
Ph) 3o &, + (CRsnc=s Sl e o/ wor. N phﬁ’“ph
1a 3a 4a
entry solvent ratio” yield of 3a/4a (%)"
1€ THF 3:6:1 55/17
2° dioxane 3:6:1 92/3
3 DCE 3:6:1 60/25
4¢ EA 3:6:1 66/9
5 CH,CN 3:6:1 0/0
6 PhCH, 3:6:1 84/14
74 PhCH, 3:6:1 54/34
8¢ PhCH, 4:8:1 25/35
94 PhCH, 5:10:1 5/56
107 PhCH, 6:12:1 0/56
11° PhCH, 5:10:1 7/66
12 PhCH, 5:10:1 3/67

“Molar ratio of la: NaH: (CF,S),C=S, with 1 equiv corresponding
to 0.2 mmol. “Yields were determined by the analysis of the crude °F
NMR spectroscopy using PhOCF; as an internal standard. “The
. o d .

reaction temperature was 80 °C. “The reaction temperature was 90
°C. “The reaction temperature was 100 °C.”The reaction temperature
was 110 °C. ®Reaction conditions: 1a, NaH and (CF;S),C=S in a
solvent at a N, atmosphere for 18 h.

1 and 3), the lower amount of remaining di-
(trifluoromethylthio)alkene would limit the further optimiza-
tion. Additionally, the use of highly polar CH;CN would
completely inhibit the formation of olefination or cyclo-
propanation products (Table 2, entry S). Toluene is the most
suitable reaction solvent for further cyclopropanation (Table 2,
entry 6). By varying the substrate equivalents, it revealed that
increasing the loading of 1a to five equivalents significantly
improved the cyclopropanation yield (Table 2, entries 7—9).
Further increases in the substrate loading did not lead to
additional improvements (Table 2, entry 10). Temperature
screening showed that heating the reaction at 110 °C provided
optimal efficiency, achieving a cyclopropanation yield of 67%
(Table 2, entry 12).

We then investigated the cyclopropanation of hydrazones,
acting as reactive diazo precursors, with (CF;S),C=S under
the conditions outlined in entry 12, Table 2. Cyclopropanes
are expected to form through the reaction of olefins with an
additional equivalent of hydrazones, necessitating the use of
hydrazones in excess. As depicted in Scheme 6, the desired
cyclopropanes were obtained with high trans-stereoselectivity
and moderate yields (4a—4e). The reaction seemed sensitive
to the electronic nature of the substituents. Electron-neutral,
mildly electron-donating, and mildly electron-withdrawing
groups facilitated moderate yields, while stronger electron-
withdrawing groups reduced yields (4e). Highly strong
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electron-withdrawing groups completely suppressed the
reaction (4f). Ketone hydrazones failed to produce the target
products (4g). We hypothesized that it would be possible to
obtain cyclopropanes with varied aryl substituents by adding
hydrazones in two portions, with the second portion
employing a different hydrazone specifically targeting the
cyclopropanation of olefins. Indeed, these reactions proceeded,
albeit with low to moderate yields (4h—40). This protocol
provides bulky cyclopropanes bearing either two identical or
different aryl groups and a gem-bis(trifluoromethylthio)-
methylene moiety, representing unique fluorinated structures
that are challenging to obtain by other methods.

The structure of 4h was confirmed by X-ray diffraction
analysis (Figure 1).>* Notably, its conformation is influenced
by steric effects. The 2-fluorophenyl substituent is positioned
far from the cis-CF; group but is in close proximity to the trans-
CF; group. The shortest distance between the fluorine atom
on the phenyl ring and the fluorine atoms in the trans-CF;
group is measured at 3.0 A. This structural feature is reflected
in the YF NMR as a longrange coupling between these
fluorine atoms. The long-range coupling results in a distinct
doublet for the trans-CF; group in '°F NMR at § — 39.66 ppm
(d, Jer = 11.8 Hz, 3F). This coupling is consistently observed
in all cyclopropanation products containing a 2-fluorophenyl
group (4d, 4h, 4j, 4n), which indicates the bulky effects of the
gem-di(trifluoromethylthio)methylene moiety.

Although we first assumed cyclopropanation process
proceeding through a carbene intermediate, further inves-
tigations seems to suggest that the predominant pathway likely
involves the formation of a five-membered ring intermediate,
based on the following evidence. First, diazo compounds have
been established as efficient 1,3-dipoles in cycloaddition
reactions for the formation of five-membered rings.”* >
Moreover, the observed substituent electronic effects in
cyclopropanation align with this primary pathway, as
demonstrated by intermolecular competition reactions
(Scheme 7). In the competitive cyclopropanation of
electron-neutral olefin 3j and electron-deficient olefin 31 with
diazo PhCH=N,, product 4q is obtained in moderate yield,
whereas 4p is formed in a relative low yield. This is likely due
to the preference of the carbon anion in PhCH™-N," to attack
the electron-deficient double bond in 3l, given the higher
electrophilicity of the double bond containing the electron-
withdrawing ester group (eq a). Conversely, in the competitive
reactions of electron-neutral diazo 1j’ and electron-deficient
diazo 11" with olefin 3a, 11’ fails to form cyclopropane 4q. In
olefin 3a, the presence of two electron-withdrawing CF;S
groups renders the double bond electrophilic. However, the
electron-withdrawing ester group in diazo 11" stabilizes the
carbon anion in ArCH™-N,*, thereby reducing the nucleophil-
icity of this anion and thus completely suppressing its
nucleophilic attack on olefin 3a.

Based on the above results and literature reports,”’~** we
propose the mechanisms for both olefination and cyclo-
propanation, as shown in Scheme 8. For the olefination, in
sharp contrast to the classic Barton—Kellogg olefination, which
requires a trivalent phosphorus to remove the sulfur atom in
thiirane,>’*° thiiranes 2, derived from intermediate A by
nitrogen gas excursion and containing a gem-bis-
(trifluoromethylthio)methylene group, can directly release
elemental sulfur under heating to produce olefins 3. For the
cyclopropanation reaction, olefins are first formed. Diazo
compounds, generated in situ, rapidly attack the olefins to form
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Scheme 6. Cyclopropanation of Hydrazones with (CF,S),C=S"
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1 / 1
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4a, 42% 4b, 43% 4c, 30% 4d, 39%
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F3CS. SCFs F3CS_SCF;3 BFsCS SCF3 F3CS_ SCF;
F r
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FaCS SCF3 FsCS SCFs F4CS SCFs
J Cl.. Cl..
CF3 4m, 319 OCH3 4n, 32% 40, 29%

“K3PO, (5.0 mmol, 10.0 equiv) was used instead of NaH. YReaction conditions: If R = R/, hydrazone 1 (2.5 mmol, 5.0 equiv), (CF;S),C=S (0.5
mmol, 1.0 equiv), NaH (5.0 mmol, 10.0 equiv), PhCH; (10.0 mL), N,, 110 °C, 9 h. If R # R/, 1 (0.5 mmol, 1.0 equiv), (CF;S),C=S (0.5 mmol,
1.0 equiv), NaH (5.0 mmol, 10.0 equiv), PhCH; (10.0 mL), N,, 110 °C, 1 h; then substrate 1’ (2.0 mmol, 4.0 equiv), N, 110 °C, 8 h.

S, SCF3

Long-range coupling in 4h

X-ray structure of 4h

Figure 1. X-ray structure of 4h and its long-range spin—spin coupling.

a five-membered ring (B) with trans-stereoselectivity due to
steric effects. The elimination of a nitrogen molecule leads to
the formation of cyclopropanes (main pathway). The carbene
pathway cannot be excluded (minor pathway). Under heating,
diazo compounds may decompose into carbenes, which then
directly cyclopropanate olefins to deliver the final products.

We successfully developed the Barton—Kellogg olefination and
cyclopropanation reactions of hydrazones or diazo compounds
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with (CF;S),C=S, a reagent that can be easily prepared on a
large scale. This method allows for the construction of bulky
olefins and cyclopropanes containing bis(trifluoromethylthio)-
methylene groups, which are challenging to synthesize through
other approaches. For the olefination reaction, the protocol
shows a broad substrate scope and does not require additional
desulfurization reagents for the conversion of thiiranes into
olefins, while also demonstrating excellent scalability. The
cyclopropanation reaction delivers products with either two
identical or varied aryl substituents and exhibits high trans-
stereoselectivity. Owing to the straightforward large-scale
preparation of (CF,;S),C=S and the easy access to unique
olefins and cyclopropanes, this method may find potential
synthetic utility in biological chemistry.

Unless otherwise noted, all reagents and solvents were obtained
commercially and used without further purification. The 'H, *C and
F NMR spectra were recorded on 400 MHz NMR spectrometers
(400 MHz for 'H, 101 MHz for *C and 376 MHz for '°F
respectively). All reactions were monitored by TLC or 'F NMR.
Flash column chromatography was carried out using 300—400 mesh
silica gel at medium pressure. High resolution mass spectrometry
(HRMS) was performed on a Waters Premier GC-TOF MS
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Scheme 7. Electronic Effects for the Cyclopropanation
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Scheme 8. Proposed Mechanism
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Cyclopropanation
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instrument with electron impact (EI) ionization mode, or on a
Thermo Scientific Q Exactive HF Orbitrap-FTMS instrument with
electrospray ionization (ESI) mode.

A 50 mL bottom flask was charged with substrate 1 (0.5 mmol, 1.0
equiv), NaH (24.0 mg, 1.0 mmol, 2.0 equiv) and dry PhCH, (S mL)
under a N, atmosphere. (CF;S),C=S (147.6 mg, 0.6 mmol, 1.2
equiv) was added. The resulting mixture was stirred at 100 °C for 8 h
(for substrate la—1v) or 30 h (for substrate 1w—1ah) under a N,
atmosphere. After the solution was cooled to room temperature,
P(OEt); (172 pL, 1.0 mmol, 2.0 equiv) was added to convert
elemental sulfur to (EtO);P=S. The resulting mixture was stirred at
room temperature for 1 h and then diluted with ethyl acetate (20 mL)
and water (30 mL). The organic phase was separated and the aqueous
phase was extracted 3 times. All organic solutions were combined and
then dried over anhydrous Na,SO,. The solvent was removed under

PhCH3, rt.,48 h

/@A N2
M802C
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A

4
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vacuum and the residue was subjected to flash column chromatog-
raphy to give final products.

A 25 mL bottom flask was charged with substrate § (0.5 mmol, 1.0
equiv) and DCM (S mL) under an air atmosphere. (CF;S),C=S
(147.6 mg, 0.6 mmol, 1.2 equiv) was added. The resulting mixture
was stirred at room temperature for 3 h under an air atmosphere.
Then the solvent was removed in vacuum, and the residue stood at
120 °C for 2 h. The reaction system was directly subjected to flash
column chromatography to give final products.

A 50 mL bottom flask was charged with substrate 1 (2.5 mmol, 5.0
equiv), NaH (120 mg, 5.0 mmol, 10.0 equiv) and dry PhCH; (10
mL) under a N, atmosphere. (CF,S),C=S (123.0 mg, 0.5 mmol, 1.0
equiv) was added. The resulting mixture was stirred at 110 °C for 9 h
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under a N, atmosphere. After the reaction was finished, the mixture
was diluted with ethyl acetate (40 mL) and water (S0 mL). The
organic phase was separated and the aqueous phase was extracted
water 3 times. All organic phases were combined and then dried over
anhydrous Na,SO,. The solvent was removed under vacuum and the
residue was subjected to further purification (for the purification
procedure, please see the details in Supporting Information) to give
final products.

A 50 mL bottom flask was charged with substrate 1 (0.5 mmol, 1.0
equiv), NaH (120 mg, 5.0 mmol, 10.0 equiv) and dry PhCH, (10
mL) under a N, atmosphere. (CF;S),C=S (123.0 mg, 0.5 mmol, 1.0
equiv) was added. The resulting mixture was stirred at 110 °C for 1 h
under a N, atmosphere. After the solution was cooled down to room
temperature, substrate 1’ (2.0 mmol, 4.0 equiv) was added. The
resulting mixture was continuously stirred at 110 °C for 8 h under a
N, atmosphere. After the reaction was finished, the mixture was
diluted with ethyl acetate (40 mL) and water (50 mL). The organic
phase was separated and the aqueous phase was extracted water 3
times. All organic phases were combined and then dried over
anhydrous Na,SO,. The solvent was removed under vacuum and the
residue was subjected to further purification (for the purification
procedure, please see the details in Supporting Information) to give
final products.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.4c01270.
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