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ABSTRACT: Although the desulfurization of thiols is a topic of great
importance and has received significant attention, most efforts have focused
on the hydrodesulfurization of thiols. In this work, we describe the
desulfurization of thiols for nucleophilic substitution. This process occurs
rapidly, promoted by the Ph3P/ICH2CH2I system, and can be extended to a wide range of nucleophiles. Notably, free amines can be
employed as nucleophiles to synthesize various secondary and tertiary amines. This method tolerates a wide array of functional
groups, including hydroxyl groups in amination reactions. Benzyl thiols are particularly reactive and can be completely converted at
room temperature within 15 min. Although alkyl thiols show lower reactivity, they can also be converted smoothly at a reaction
temperature of 70 °C overnight.

Desulfurization of thiols is a topic of great value in peptide
synthesis,1 drug developments2 and fossil fuel treat-

ments.3 The combination of thiol-mediated ligation with a
desulfurization is an attractive strategy for the synthesis of
protein targets.1 Desulfurization-based structural modification
of thiol-containing biologically active molecules, including
pharmaceuticals like Captopril2a,b and Glutathione,2c,d could
significantly bolster drug development initiatives. Desulfuriza-
tion plays a crucial role in eliminating thiols from crude fossil
fuels, preventing the release of environmentally damaging
sulfur oxides generated from thiols upon combustion.3

Consequently, substantial efforts are being invested in
developing efficient methods for desulfurization of thiols.
Some effective desulfurization strategies have been devel-

oped (Scheme 1, Previous work).4 Extensive studies have
focused on the hydrodesulfurization process for converting
alkyl thiols into alkanes,1b,c,5 a strategy pioneered by Hoffmann
and his colleagues, who demonstrated that thermal or UV light
conditions can facilitate this process in the presence of
P(OEt)3.

5a Due to the low bond energy of the RS-H bond,

homolytic cleavage may occur under light irradiation to
generate a RS• radical, which would be readily trapped by a
trivalent phosphorus, resulting in the cleavage of the C−S
bond to generate an alkyl radical for hydrogenation.1c,5a,h

Based on these findings, it has been determined that
hydroalkylation of alkenes with primary thiols can also be
successfully achieved through a radical desulfurization
process.6 Primary benzyl thiols can attack a hypervalent iodine,
such as Dess−Martin periodinane (DMP), and the subsequent
elimination affords esters, in which the ArCO2− and
R1R2CH− moieties are derived from the DMP reagent and
thiols, respectively.7 Primary and secondary benzyl thiols can
be desulfurized and oxidized to aldehydes and ketones,
respectively. The reaction is highly effective, but the complex
reaction conditions involving three oxidants and light
irradiation may be a drawback of this method.8 The Ph3P/
DDQ system can be used for cyanation of thiols with nBu4N+

CN−.9 Both primary and secondary thiols are reactive under
these conditions. However, DDQ’s strong oxidative properties
and moisture sensitivity might narrow its applicability due to
its low compatibility with functional groups and the risk of
releasing highly toxic HCN when it reacts with water.10

Overall, while desulfurization has received considerable
interest, the focus has predominantly been on hydro-
desulfurization, leaving other reactions largely unexplored.
We have previously demonstrated that the R3P/ICH2CH2I

system is effective in activating alcohols to cleave the C−OH
bond, facilitating various nucleophilic substitution,11 such as
halogenation,11a fluorination11d and sulfonylation.11f Notably,
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Scheme 1. Desulfurization of Thiols
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the halogenation method was effectively utilized in the total
synthesis of Clionastatins A and B during the chlorination step,
a result unattainable with other commonly employed
methods.12 We hypothesized that the C−SH bond in thiols
could potentially be activated by the R3P/ICH2CH2I system
for nucleophilic substitution, given that oxygen and sulfur
belong to the same chemical family. However, the differences
between the hydroxyl and the thiol groups should be
considered. While the bond energy of C−S is lower than
that of C−O (with a bond energy of 74 kcal/mol for the CH3−
SH bond compared to 92.3 kcal/mol for the CH3−OH
bond),13 thiols are significantly more acidic than alcohols (with
a pKa of 9.8 for CH3SH

14 compared to 15.54 for CH3OH15).
The high acidity of thiols can lead to the protonation of
nucleophiles, reducing their nucleophilicity and potentially
inhibiting nucleophilic substitution. Surprisingly, the nucleo-
philic substitution of thiols promoted by the R3P/ICH2CH2I
system can accommodate a wide range of nucleophiles, such as
amines, carboxylate, phenolate and halides. Especially, free
amines can function as nucleophiles, sharply contrasting with
traditional alkyl halide amination methods, which commonly
face challenges in preventing side reactions such as the
alkylation of the amination products with alkyl halides. The
reactions proceeded rapidly under an air atmosphere and
moderate to high yields were obtained (Scheme 1, this work).
The optimal conditions for the desulfurized nucleophilic

substation of thiols were identified after systematic screening of
the amination of benzyl thiol (1-1) (see Supporting
Information). The reaction promoted by the Ph3P/ICH2CH2I
system proceeded very quickly under an air atmosphere,
achieving the desired product in just 15 min with a 91% yield.
Ph3P was converted into the nonreusable byproducts Ph3P�O
and Ph3P�S in this reaction, which is further discussed in the
mechanistic investigation section. With the optimal conditions
in hand, we proceeded to explore the substrate scope of the
Ph3P/ICH2CH2I-promoted desulfurized nucleophilic substitu-
tion of thiols. As shown in Scheme 2, the substitution process
can be extended to a wide variety of nucleophiles, showcasing
extensive substrate scope and significant tolerance for various
functional groups. Notably, all of these reactions were
performed under an air atmosphere, eliminating the need for
an inert gas environment, which is very convenient for
operation. Benzyl thiols are highly reactive, and a 15 min or
reaction time can give moderate to high yields. It is quite
surprising to see that 4-aminophenol can also act as a
nucleophile, with the hydroxyl group remaining unaffected,
despite the potential for the hydroxyl group to attack the
electrophilic center (2-2). The compatibility with alkynyl (2-3)
and halide (2-6 to 2-11) groups may allow for further
transformations. Electron-deficient phenyl amines tended to
result in lower yields, probably because of reduced
nucleophilicity (2-12 and 2-13). Benzyl thiols with electron-
deficient groups also produced lower yields, due to the
decreased nucleophilicity of the thiol group, which prevents it
from being activated by attacking the iodophosphonium salt
generated in situ (see the mechanism section) (2-15 and 2-
16). In addition to primary amines, secondary amines are also
well-suited for the substitution reaction despite a higher steric
hindrance (2-17 to 2-27). However, the use of highly sterically
hindered amines resulted in low yields (2-26). While
heterocyclic thiols generally undergo smooth conversion,
exceptions occur with pyridinyl thiol, where the pyridinyl
group may act as a nucleophile, leading to side reactions (2-

22). For the amine containing two amino groups, a secondary
alkyl amino and a tertiary aryl amino groups, the tertiary amino
group exhibited no significant side effects, likely attributable to
its lower nucleophilicity (2-27). Alkyl thiols show lower
reactivity, resulting in almost no desired product under the
conditions for the amination of benzyl thiols. Fortunately, they
can also be successfully converted at a reaction temperature of
70 °C overnight (2-28 to 2-30). This process can also be
extended to secondary thiols (2-31 to 2-32).
Since amines are fundamental products and building blocks

in chemistry with particular importance for the pharmaceutical
and agrochemical industries, amination has become a highly
active research topic.16 Many amination methods have been
developed, such as reductive amination,17 Buchwald−Hartwig
amination18 and traditional amination of alkyl halides.19 All of
these amination methods have found widespread applications,

Scheme 2. Desulfurization of Thiols for Nucleophilic
Substitutiona

aIsolated yields are shown. Reaction conditions: 1 (0.5 mmol),
nucleophile (2.5 equiv), Ph3P (1.2 equiv), ICH2CH2I (1.2 equiv) in
NMP (5 mL) at room temperature for 15 min. b4 equiv of the
nucleophile was used. cThe reaction time was 2 h. dThe reaction was
performed at 70 °C overnight. eNa+ Nu− was used as a nucleophile
and the reaction time was 1 h. fK+ Nu− was used as a nucleophile and
the reaction time was 1 h. gNo additional iodide nucleophile was
needed as the iodide anion was generated from the reaction system.
hFor chlorination and bromination, nBu4N+ X− (X = Cl or Br) was
used as a nucleophile.
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but they may still have some drawbacks. For instance, in
reductive amination, the reducibility of the carbonyl group can
diminish the reaction’s efficiency. Similarly, in the traditional
amination of alkyl halides, the resultant product is typically a
mixture of alkylated derivatives, as the amination product is
prone to further alkylation by alkyl halides.19 In this regard, our
protocol is quite appealing because it allows for easy access to
various amines under mild conditions with convenient
operations.
In addition to amine nucleophiles, other nucleophiles were

also examined (Scheme 2, 2-33 to 2-43). N-nucleophiles, like
hydrazine and imidazole, were directly employed in the Nu-H
form (2-33 and 2-34). For esterification and etherification,
nucleophiles were used in their salt forms to increase
nucleophilicity (2-35 to 2-39). Sodium sulfinates as
nucleophiles would give sulfones (2-40), which are also are
important structural motifs that are prevalent in diverse
biologically active molecules20 and organic reagents/inter-
mediates.21 For iodination, no additional iodide nucleophile
was needed as the iodide anion was generated from the
reaction system (2-41). Bromination and chlorination
occurred smoothly with the use of nBu4N+ X− (X = Cl or
Br) as nucleophiles (2-42 and 2-43).
In order to further demonstrate the synthetic utility of this

protocol, a gram-scale reaction was performed and two
pharmaceuticals were synthesized by this method (Scheme
3). The gram-scale reaction was also very rapid, yielding the

desired product in just 15 min with a 79% yield (Scheme 3, eq
1). This reaction was conducted in an open flask under an air
atmosphere, enhancing operational convenience. Butenafine, a
medication used for the topical treatment of various fungal
infections like tinea versicolor,22 was synthesized using this
desulfurization method in a good yield (Scheme 3, eq 2).
Similarly, Donepezil, which is used to treat Alzheimer’s-type
dementia,23 was also synthesized effectively using this protocol
(Scheme 3, eq 3).
In our previous studies on dehydroxylative substitution of

alcohols, we propose that mixing Ph3P and ICH2CH2I together
in DMF would immediately produce Vilsmeier−Haack type
intermediates for activating the hydroxyl group, a process
involving the conversion of Ph3P into Ph3P�O, where the
oxygen atom originates from the DMF solvent.11b,c Given the
structural similarities between NMP and DMF, it is
conceivable that the Vilsmeier−Haack type mechanism may
also apply to the desulfurization process in this work. If so,
Ph3P would predominantly be converted into Ph3P�O, with
the oxygen atom sourced from the solvent, NMP. However, we
found that under the optimal conditions, Ph3P was mostly

converted into Ph3P�S, with only a low yield of Ph3P�O
(Scheme 4, eq 1). Apparently, the sulfur atom in Ph3P�S

comes from thiol substrate 1-1, indicating that the Vilsmeier−
Haack type intermediate is not critical in the desulfurization
process. We speculated that the solvents NMP and DMF have
distinctly different effects. In NMP, the immediate mixing of
Ph3P with ICH2CH2I resulted in the complete conversion of
both compounds, similar to the case in DMF. However, in
NMP, Ph3P was converted into two identifiable phosphorus
species, Ph3P�O and a pentacoordinate phosphorus, Ph3PI2,
which dominates as the major phosphorus species, as
confirmed by 31P NMR spectroscopy (Scheme 4, eq 2).
Ph3PI2 is stable enough to be detected by 31P NMR
spectroscopy in NMP, unlike in DMF where it rapidly reacts
with DMF to form Vilsmeier−Haack type intermediates. After
Ph3PI2 was produced, sequentially adding substrate Bn-SH and
nucleophile PhNH2 resulted in the desired product with a
good yield, further suggesting that Ph3PI2 is a key intermediate
for this desulfurization reaction (Scheme 4, eq 3).
Based on the above results, we propose the reaction

mechanism shown in Scheme 5. Mixing Ph3P and ICH2CH2I

together would immediately release ethylene CH2�CH2 and
generate the key intermediate Ph3PI2, a process which has been
studied in our previous reports.11 Ph3PI2 can effectively
activate thiols by forming the P−S intermediate (A), which
is the predominant path. The high energy of the P�S bond
makes the formation of Ph3P�S energetically favorable, which
facilitates the substitution of thiols via the cleavage of the C−S
bond. Even though Ph3PI2 shows some stability in NMP, it
may still coordinate with NMP, leading to the formation of the
Vilsmeier−Haack type intermediate (B), which can also
activate thiols for nucleophilic substitution (minor path).
In summary, we have detailed a desulfurization process for

thiols promoted by Ph3P/ICH2CH2I, suitable for nucleophilic
substitution with a broad spectrum of nucleophiles. Notably,
free amines can be employed as nucleophiles to synthesize
various secondary and tertiary amines. Benzyl thiols are
particularly reactive and can be completely converted at

Scheme 3. A Gram-Scale Reaction and the Synthesis of Two
Pharmaceuticals

Scheme 4. Role of the Ph3P/ICH2CH2I System

aThe yield was determined by GC; bIsolated yields are shown.

Scheme 5. Proposed Reaction Mechanism
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room temperature within 15 min. This method tolerates a wide
array of functional groups, including hydroxyl groups in
amination reactions. Given the widespread availability of thiols,
this desulfurization approach holds significant potential for
synthetic applications.
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