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ABSTRACT: Efforts to develop alternatives to triflic anhydride (Tf2O) as a trifluoromethylation reagent continue due to its
limitations, including volatility, corrosiveness, and moisture sensitivity. Described herein is the use of a trifluoromethylsulfonylpyr-
idinium salt (TFSP), easily obtained by a one-step reaction of Tf2O with 4-dimethylaminopyridine, as a reagent for the
trifluoromethylative difunctionalization of alkenes by photoredox catalysis. DMSO and CH3CN are suitable solvents for achieving
keto- and amino-trifluoromethylation of alkenes, respectively, with good functional group tolerance.

The distinct electronic properties of the trifluoromethyl
group (CF3), such as its strong electron-withdrawing

capacity (σm = 0.43, σp = 0.54) and high lipophilicity (Hansch
constant π = 0.88),1 have made it a useful tool for modifying
the physicochemical properties of organic molecules. As a
result, a large number of CF3-containing pharmaceuticals have
been developed, including flecainide, efavirenz, and tipranavir.
Given the great value of introducing a CF3 group for altering
the biological activity of compounds, extensive research efforts
have been devoted to developing new trifluoromethylation
reagents for the installation of a CF3 group.2 Despite the
existence of various reagents, such as TMSCF3,

2g CF3SO2Na,2i

Togni Reagents,2f TT-CF3
+OTf−,3 and the Umemoto reagent,4

certain limitations, such as high volatility or cost, have
prompted further investigations for the development of
efficient reagents.

Triflic anhydride (Tf2O) is a highly reactive and versatile
reagent commonly used in organic synthesis.5 Its primary
application is activating C−OH bonds by converting alcohols
or phenols into triflates, allowing for the subsequent
nucleophilic substitution or cross coupling.6 In 2018, Tf2O
was first identified as a trifluoromethylation reagent by the
group of Qing.7 They found that Tf2O can be activated by
pyridine to form a CF3SO2

−N+ intermediate, which can
undergo desulfonylation to release a CF3• radical under
photoredox conditions. This finding has served as inspiration
for other research groups to explore the radical trifluorome-
thylation using Tf2O in the presence of a pyridine derivative as
an activator.8 While Tf2O is efficient as a trifluoromethylation
reagent, it does have some disadvantages, such as high
volatility, corrosiveness, and moisture sensitivity. To address
these challenges, two alternative CF3SO2-containing salts have
been developed, an imidazolium salt (IMDN-SO2CF3)

9 and a
pyridinium salt (TFSP) (Scheme 1A).10 The imidazolium salt

(IMDN-SO2CF3), developed by Wang and his colleagues, has
shown promising capabilities in enabling the C(sp3)−H
trifluoromethylation of azines9b and the trifluoromethylation-
borylation of unsaturated hydrocarbons.9a Although the TFSP
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Scheme 1. CF3SO2-Containg Salts and Their Use in
Trifluoromethylation
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pyridinium salt was previously known,11 it was first developed
as a trifluoromethylation reagent by our research team.10,12

As mentioned above, when using Tf2O as a trifluoromethy-
lation reagent, the presence of pyridine is required to activate
Tf2O by forming a crucial CF3SO2

−N+ intermediate.7,8

However, this intermediate has not been isolated and
characterized, probably because of its low stability, and as a
result it has not been utilized as a trifluoromethylation reagent.
In sharp contrast, the TFSP salt, which can be easily obtained
by a one-step reaction of Tf2O with 4-dimethylaminopyridine,
is a stable and easy-to-handle solid, which makes it a highly
practical trifluoromethylation reagent.12a,c We have discovered
that TFSP can effectively facilitate C−H trifluoromethylation
of (hetero)arenes12a and various trifluoromethylations of
alkenes,10,12b,c such as azido- and cyano-trifluoromethylation,10

hydro-trifluoromethylation,12b and sulfonyl-trifluoromethyla-
tion.12c These trifluoromethylative difunctionalization reac-
tions allow for the incorporation of a second functional group
in addition to the CF3 group, which has become an active
research area.13 However, for the installation of the second
group X, only a C−X single bond was constructed using TFSP.
We are then interested in the introduction of a second group Y
by constructing C�Y double bonds with the use of TFSP. We
find that a DMSO/dioxane cosolvent allows for keto-
trifluoromethylation of alkenes with TFSP. Interestingly, the
use of CH3CN as a reaction solvent leads to amino-
trifluoromethylation products. Herein we describe the
solvent-dependent trifluoromethylative difunctionalization of
alkenes under photocatalytic conditions (Scheme 1B).

Keto-trifluoromethylation of alkenes, which was pioneered
by us14 and has been further developed by other research
groups,15 usually occurs via a single electron transfer to
generate a CF3• radical, which attack alkenes to form a C−CF3
bond. Prompted by the shortcomings of these approaches,
such as the stoichiometric use of oxidants or the high cost of
trifluoromethylation reagents, we direct our investigation
toward employing TFSP to carry out this reaction under
photoredox conditions. Styrene (1-1) was used as the model
substrate, and DMSO was selected as the keto oxygen source
in our optimization process, as summarized in Table 1.
Initially, we explored a range of photocatalysts (entries 1−6)
and observed that the use of Ir(ppy) as the photocatalyst in
conjunction with DMSO as the solvent produced the desired
product, albeit with a low yield of 16% (entry 1). We
subsequently found that TFSP is reactive to DMSO and will be
transformed by DMSO into an unknown species. Therefore,
we experimented with a mixed solvent system (see the
Supporting Information for details) comprising DCM or 1,4-
dioxane (entries 7 and 8). This approach improved the yield to
35%, with dioxane being preferred to avoid the complexities
encountered with DCM. Further experimentation with differ-
ent sulfoxides to identify an effective oxygen source (entries 9−
17) established that DMSO was superior for generating the
targeted product. Prolonging the reaction time to 24 h
enhanced the yield to 37% (entry 10). Notably, when DMSO
was used in 10 equiv, we succeeded in increasing the yield
significantly to 54% (entry 18). Further increasing the loading
of DMSO did not increase the yield (entry 19). Reducing the
photocatalyst loading to 2.5 mol % resulted in a similar yield
(entry 20).

Equipped with the optimal conditions as detailed (Table 1,
entry 20), we explored the substrate scope of the keto-
trifluoromethylation of styrenes. Scheme 2 illustrates the broad

applicability of the reaction, indicating that a diverse array of
styrenes could undergo keto-trifluoromethylation. A variety of
functional groups, including nitrile, ester, halogen, boronic
ester, and silicon groups, were shown to be compatible with
the process. The reaction was found to be successful regardless
of the electronic nature of the substituents on the aryl ring,
with electron-donating, electron-neutral, and electron-with-
drawing groups all yielding the desired products. Styrenes with
varying electronic properties could be successfully transformed
into their corresponding keto-trifluoromethylation products
with moderate yields. Even styrenes containing a reactive
silicon or a boronic ester group could be used without
compromising the integrity of these groups, as seen in products
3-12 and 3-13. Besides terminal alkenes, internal alkenes are
also reactive toward this process (3-6, 3-13 and 3-14). For all
of the above reactions, only moderate yields were obtained,
partly due to the occurrence of deprotonative trifluoromethy-
lation, which resulted in the formation of CF3-alkenes in
approximately 20% yields. The reaction has been successfully
applied in the synthesis of analogs of fenofibrate16 (3-15) and

Table 1. Optimization of Keto-Trifluoromethylation
Conditionsa

entry [P.C.] sulfoxide yield (%)b

1c Ir(ppy)3 S1 (2 mL) 16
2c [Ir(dtbbpy)(ppy)2]PF6 S1 (2 mL) 7
3c [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 S1 (2 mL) trace
4c Ru(bpy)3Cl2 S1 (2 mL) N.D.
5c Ru(bpy)3(PF6)2 S1 (2 mL) trace
6c [Ir(dF(CF3)ppy)2(dtbbpy)]BF4 S1 (2 mL) trace
7d Ir(ppy)3 S1 (1 mL) 35
8e Ir(ppy)3 S1 (1 mL) 35
9 Ir(ppy)3 S1 (2 equiv) 21
10f Ir(ppy)3 S1 (2 equiv) 37
11 Ir(ppy)3 S2 (2 equiv) 7
12 Ir(ppy)3 S3 (2 equiv) trace
13 Ir(ppy)3 S4 (2 equiv) trace
14 Ir(ppy)3 S5 (2 equiv) 6
15 Ir(ppy)3 S6 (2 equiv) 20
16f Ir(ppy)3 S6 (2 equiv) 25
17 Ir(ppy)3 S7 (2 equiv) 16
18f Ir(ppy)3 S1 (10 equiv) 54
19f Ir(ppy)3 S1 (12 equiv) 51
20f,g Ir(ppy)3 S1 (10 equiv) 53
aReaction conditions: substrate 1-1 (0.2 mmol), 2, sulfoxide, and
photocatalyst [P.C.] (3 mol %) in 1,4-dioxane (2 mL) were irradiated
with 40 W blue LEDs at r.t. for 24 h under a N2 atmosphere. bYield
was determined by 19F NMR using PhOCF3 as an internal standard.
cDMSO was used as the reaction solvent instead of dioxane. dDCM
(1 mL) was used as a cosolvent. eDioxane (1 mL) was used as a
cosolvent. fThe reaction time was 24 h. gUsing 2.5 mol % Ir(ppy)3.
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estrone17 (3-16), which are used to treat abnormal blood lipid
levels and symptoms caused by estrogen deficiency in peri- and
postmenopausal women, respectively. This process is in-
effective for the trifluoromethylation of aliphatic alkenes.

We found that using CH3CN as the solvent leads to amino-
trifluoromethylation product 4-1. Subsequent optimization of
the reaction conditions (see the Supporting Information for
details) identified that employing 0.5 mol % Ir(ppy)3 as the
photocatalyst yields the amino-trifluoromethylation product
with good efficiency. A broad range of electron-rich and
electron-neutral substrates with a variety of functional groups
proved to be compatible with the aminotrifluoromethylation
(Scheme 3). However, electron-deficient substrates (4-10 to 4-
15) exhibit lower reactivity toward this process when Ir(ppy)3
is employed as the catalyst, which is likely due to the difficulty
in oxidizing electron-deficient benzyl radical intermediates.
Notably, the use of [Ir(dtbbpy)(ppy)2]PF6 as a photocatalyst
was especially effective for transforming electron-deficient
substrates. The superior performance of [Ir(dtbbpy)(ppy)2]-
PF6 can be attributed to its higher oxidation potential
(E1/2

ox [IrIV/IrIII] = +1.21 V vs SCE) when compared with that
of Ir(ppy)3 (E1/2

ox [IrIV/IrIII] = +0.77 V vs SCE), favoring the
oxidation of the challenging electron-deficient benzyl radicals.
The reaction’s compatibility with reactive functional groups
like Bpin and TMS could permit further diversification of the
products (4-16 and 4-18). Besides aryl alkenes, enamines
could also be transformed into the desired products (4-17).
Furthermore, the reaction was successful in producing CF3-
substituted amide products 4-19 and 4-20, derivatives of
fenofibrate and estrone, respectively.

Apart from keto- and amino-trifluoromethylation, our study
also investigated the use of different solvents to expand the
applicability of trifluoromethylative bifunctionalization of
alkenes. As shown in Scheme 4, a variety of solvents can be
employed to achieve diverse trifluoromethylative bifunctional-
ization products, further exemplifying the practicality of this
trifluoromethylation protocol.

To illustrate the synthetic utility, the reactions were
performed on gram scales (Scheme 5), yielding product 3-9
(1.08 g) in a 55% yield and product 4-18 (1.09g) in a 72%
yield, respectively. It should be noted that the deprotonative
trifluoromethylation byproduct 3-9′ is also formed in the case
of keto-trifluoromethylation with a 17% yield.

Further evidence was gathered to deepen our understanding
of the reaction mechanism. It was found that DMSO is crucial
to the success of keto-trifluoromethylation, suggesting that
DMSO is the keto oxygen source (Scheme 6a). The absence of
the desired product when either the photocatalyst Ir(ppy)3 or
light exposure is omitted confirms that the trifluoromethylation
reactions proceed via a photoredox-catalyzed pathway. More-
over, when 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), a
radical scavenger, was introduced to the reaction, the yields of
desired products were dramatically decreased and TEMPO−

Scheme 2. Substrate Scope of Keto-Trifluoromethylationa

aIsolated yields are shown. Reaction conditions: substrate 1 (0.5
mmol), 2 (1.0 mmol), Ir(ppy)3 (0.0125 mmol, 2.5 mol %), DMSO
(354 μL, 5 mmol), and dioxane (5 mL) at room temperature for 24 h
under the irradiation of LED lights (450 nm) under a N2 atmosphere.

Scheme 3. Amino-Trifluoromethylation of Alkenesb

a[Ir(dtbbpy)(ppy)2]PF6 was used as a catalyst. bIsolated yields are
shown. Reaction conditions: substrate 1 (0.5 mmol), 2 (0.9 mmol),
Ir(ppy)3 (0.0025 mmol, 0.5 mol %), H2O (0.5 mmol), and CH3CN
(5 mL) at room temperature for 10−12 h under the irradiation of
LED lights (450 nm) under a N2 atmosphere.

Scheme 4. Trifluoromethylative Bifunctionalization of
Styrened

aUsing iPrOH as a solvent without H2O. bUsing acetone as a solvent.
cUsing DMF as a solvent. dIsolated yields are shown. Reaction
conditions: substrate 1 (0.5 mmol), 2 (1.0 mmol), Ir(ppy)3 (0.0125
mmol, 2.5 mol %), H2O (0.5 mmol), and solvent (5 mL) at room
temperature for 12 h under the irradiation of LED lights (450 nm)
under a N2 atmosphere.
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CF3 was generated as a byproduct, as illustrated in Scheme 6b.
These findings strongly suggest that the trifluoromethylation of
styrene operates through a radical mechanism.

Based on the mechanistic investigation and our previous
studies,10,12 we propose a plausible mechanism, as shown in
Scheme 7. The photoreductive cleavage of TFSP by the
excited-state photocatalyst results in the formation of radical A,
which then undergoes homolysis to produce DMAP and
radical B. The radical B then converts to the CF3• radical via
the elimination of SO2. The CF3• radical is subsequently
trapped by styrene to generate benzyl radical intermediate C,

which is oxidized to produce carbocation D. The Ritter
reaction and Kornblum oxidation give the final amino-
trifluoromethylation and keto-trifluoromethylation products,
respectively.

In conclusion, we have developed a photoredox-catalyzed
keto- and amino-trifluoromethylation of alkenes with TFSP.
TFSP, easy to prepare and convenient to handle, can act as a
trifluoromethyl radical source under reductive conditions. The
distinctive solvent-dependent keto- and amino-trifluoromethy-
lation processes show a good level of functional group
tolerance. The synthetic practicality was further demonstrated
by gram-scale reactions and the synthesis of pharmaceutical
derivatives.
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