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ABSTRACT: Described here is the R3P/ICH2CH2I-promoted
dehydroxylative sulfonylation of alcohols with a variety of sulfinates.
In contrast to previous dehydroxylative sulfonylation methods,
which are usually limited to active alcohols, such as benzyl, allyl, and
propargyl alcohols, our protocol can be extended to both active and
inactive alcohols (alkyl alcohols). Various sulfonyl groups can be
incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the
installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high
yields were obtained within 15 min of reaction time.

Sulfones are important structural motifs that are prevalent
in diverse biologically active molecules1 and organic

reagents/intermediates.2 Many sulfone-containing pharma-
ceuticals have been developed, such as Eletriptan, Rofecoxib,
and Chlormezanone. Therefore, the synthesis of sulfones has
received considerable attention and the past few years have
witnessed some of the most important and revolutionizing
advances in the field of sulfonylation.3 A wide range of
sulfonylation reagents have been developed,4 such as sulfur
dioxide,5 sulfonyl hydrazides,6 and sulfinic acids and their
salts,7 for the formation of various C−SO2 bonds. Despite
these accomplishments, it is still highly desirable to develop
mild and efficient protocols for the direct conversions of
common functional groups into sulfonyl groups.
The hydroxyl moiety is a functional group which is

commonly found in organic molecules. Given the ubiquity of
alcohols, the dehydroxylative functionalization of alcohols has
become an active research area,8 and the dehydroxylative
sulfonylation of alcohols may be considered as an attractive
strategy for the installation of sulfonyl groups. Due to its poor
leaving ability, the hydroxyl group usually needs to be activated
by a Lewis acid or a Brönsted acid (Scheme 1, eq 1).6b,9 A
Ph3P/NBS system can also effectively activate the hydroxyl
group for arylsulfonylation (eq 2).10 The Pd-catalyzed allylic
substitution with the activation of the hydroxyl group has
served as an efficient approach for the dehydroxylative
sulfonylation (eq 3).11 Shen’s reagent [N-SCF3], which has
proved to be a good trifluoromethylthiolation reagent,12 can
also act as a CF3S source for sulfonylation of allylic and
propargyl alcohols (eq 4, right side).13 Recently, it was found
that a fluorinated alcohol could also activate allylic alcohols for
the installation of SO2 groups by using sulfinyl amides as
reagents (eq 4, left side).14 Although efficient for dehydrox-
ylative sulfonylation, these reported methods are limited to
active alcohols, including benzyl, allyl, and propargyl alcohols.
Highly active alcohols, such as benzyl-allyl or benzyl-propargyl

alcohols, need to be used in some cases. Furthermore, some
methods may suffer from a two-step process or the use of
expensive reagents or transition metals.
On the basis of our previous studies which show that R3P/

ICH2CH2I can act as an effective reagent system for the
activation of hydroxyl groups,15 we speculated that the R3P/
ICH2CH2I system may be able to activate alcohols for
sulfonylation. Herein we describe the R3P/ICH2CH2I-
promoted dehydroxylative sulfonylation of a wide range of
alcohols, including active alcohols and inactive alcohols (alkyl
alcohols) (eq 5). All reagents are cheap and widely available.
Various sulfonyl groups can be incorporated, such as CF3SO2
and HCF2SO2, which are fluorinated groups of interest in
pharmaceutical chemistry and the installation of which has
received increasing attention.9e,f,13,16 Notably, all reactions
occurred rapidly, and full conversions were observed within 15
min of reaction time.
We first examined the sulfonylation of alcohols with

CF3SO2Na (Table 1). Our previous observations have shown
that both DMF15b and CH3CN

15a can be used as a suitable
reaction solvent for the dehydroxylative substitution. DMF and
CH3CN were then screened for the dehydroxylative
trifluoromethylsulfonylation (entries 1−2). Almost no desired
product was observed in CH3CN (entry 1). To our delight, the
reaction proceeded smoothly in DMF (entry 2). The loadings
of R3P, ICH2CH2I, and CF3SO2Na were examined (entries 3−
7). The use of excessive CF3SO2Na was necessary, and Ph3P/
ICH2CH2I can be used in slight excess (entry 7). Various
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trivalent phosphines (R3P) were screened, and Ph3P was found
to be a superior choice (entry 7 vs entries 8−11).
With the optimal conditions in hand (Table 1, entry 7), we

then investigated the substrate scope. As shown in Scheme 2,
the sulfonylation process could be extended to a variety of
alcohols, many functional groups can be tolerated, and 15 min
of reaction time gave moderate to high yields. The aryl

substituent electronic effects have almost no impact on the
reaction yields (2a−2j). Heterobenzyl alcohols could also be
converted smoothly (2k−2m). Low yields were obtained for
the transformations of secondary alcohols (2n−2o), probably
due to steric effects. This sulfonylation reaction could also be
applied to allyl alcohols (2p). Alkyl alcohols show lower
reactivity, and the further screening of reaction conditions (see
Supporting Information) showed that the use of Ph2PCH3
instead of Ph3P and 120 °C of reaction temperature can give
the desired product. Although the alkyl alcohols were
completely consumed, some unknown byproducts were
generated and only moderate yields were obtained (2q−2r).
The successful incorporation of a CF3SO2 group encouraged
us to investigate the installation of a HCF2SO2 group. To our
delight, the reactions occurred well to provide the desired
products in high yields (2s−2w).
Due to its unique electronic properties, such as strong

electronegativity and a small atomic radius, the fluorine
element possesses “magic effects” and thus has found
widespread applications in many areas, including pharmaceut-
ical/agrochemical developments and material sciences.17 Both
of the two fluorinated groups, CF3SO2 (Hammet constants σm
= 0.83, σp = 0.96) and HCF2SO2 (σm = 0.75, σp = 0.86), show
strong electron-withdrawing effects,18 and the Hansch π
constant of CF3SO2 has been determined to be 0.55,18a

which suggests a moderate lipophilic effect. The electronic
effects make these two groups attractive, and thus the
incorporation of them into organic molecules has become an
active research area. For the installation of a CF3SO2 group,
some reagents have proved to be efficient, including
CF3SO2Na,9e,f,16c a N-SCF3 type reagent,13 CF3SO2Cl,

16a

Scheme 1. Dehydroxylative Sulfonylation of Alcohols

Table 1. Optimization of Dehydroxylative
Trifluoromethylsulfonylation of Benzyl Alcohola

entry R3P ratiob yield (%)c

1d Ph3P 1:1.4:1.4:4.0 trace
2 Ph3P 1:1.4:1.4:4.0 77
3 Ph3P 1:1.0:1.4:4.0 67
4 Ph3P 1:2.0:1.4:4.0 63
5 Ph3P 1:1.0:1.0:4.0 58
6 Ph3P 1:1.4:2.0:4.0 59
7 Ph3P 1:1.4:1.4:3.0 79
8 (p-OMePh)3P 1:1.4:1.4:3.0 74
9 (EtO)3P 1:1.4:1.4:3.0 21
10 (p-MePh)3P 1:1.4:1.4:3.0 69
11 (C6F5)3P 1:1.4:1.4:3.0 15

aReaction conditions: Substrate 1a (0.2 mmol), R3P, ICH2CH2I, and
CF3SO2Na in DMF (1.2 mL) at 80 °C under a N2 atmosphere for 15
min. bMolar ratio of 1a:R3P:ICH2CH2I:CF3SO2Na. cThe yields were
determined by 19F NMR spectroscopy with PhOCF3 as an internal
standard. dCH3CN was used as the reaction solvent instead of DMF.
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CF3SOCl,16e and a system consisting of Togni reagent and
NH2C(�NH)SO2H.16d The installation of a HCF2SO2 group
has been less explored. Recent effective methods include the
Cu-mediated cross coupling of diazo compounds with
HCF2SO2Na16b and the Pd-catalyzed coupling of aryl iodides
with NH2C(�NH)SO2H/HCF2Cl.

16d The above methods
may suffer from the use of expensive reagents, an expensive
transition metal catalyst, highly active substrates, or substrates
which are not easily available. In contrast, our protocol may
feature a wide substrate scope, wide availability of alcohols, low
cost of reagents, and rapid conversions.
Besides fluoroalkylsulfinates, other sulfinates, including aryl-

and alkyl-sulfinates, were also investigated. Compared with
fluoroalkylsulfinates, in which the strong electronegativity of
fluorine atoms decreases the nucleophilicity of the sulfinates,
nonfluorosulfinates show higher reactivity so that the use of 2
equiv of sulfinates can afford the desired product in good to
high yields (Scheme 3). A wide substrate scope was observed.

Various alcohols could be transformed smoothly, including
benzyl, allyl, propargyl, and alkyl alcohols. Alkyl alcohols are
reactive toward this process, but lower yields were obtained
even at 120 °C of reaction temperature (3q−3t).
In order to further demonstrate the synthetic utility of this

sulfonylation process, a gram-scale reaction was carried out
(Scheme 4). The reaction still occurred rapidly, and a good
yield was obtained.
Our previous studies have shown that the Ph3P/ICH2CH2I-

promoted dehydroxylative substitution occurs via an SN2
process, as evidenced by the inversion of configuration with
partial racemization for the substitution of secondary alcohol-
s.15a,b In this sulfonylation reaction, the yield was not affected
by the presence of a radical scavenger, 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO), excluding the radical path and
supporting the SN2 path (Scheme 5).
On the basis of the above results and our previous studies,15

we propose the plausible reaction mechanism as shown in

Scheme 2. Sulfonylation of Alcohols with Fluoroalkylsulfinatesa

aIsolated yields are shown. Reaction conditions: substrate 1 (0.5 mmol), Ph3P (1.4 equiv), ICH2CH2I (1.4 equiv), RFSO2Na (3 equiv) in DMF (3
mL) at 80 °C for 15 min. bPh2PCH3 was used instead of Ph3P and the reaction temperature was 120 °C in the cases of 2q and 2r.
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Scheme 6. A halogen bonding between Ph3P and ICH2CH2I
drives the formation of iodophosphonium salt Ph3P+-I I−,
which is a highly electrophilic intermediate and can rapidly
react with DMF to form intermediate A (path I, predominant
path). The DMF cation part in intermediate A can be
stabilized by the resonance effect (intermediates A and B), but
is also quite reactive toward nucleophiles. The attack of an
iodide anion produces a Vilsmeier−Haack-type intermediate
(C), which can easily activate alcohols by forming intermediate
D. The nucleophilic attack of sulfinates at intermediate D
provides final products. On the other hand, Ph3P+-I I− may

Scheme 3. Sulfonylation of Alcohols with Nonfluorosulfinatesa

aIsolated yields are shown. Reaction conditions: substrate 1 (0.5 mmol), Ph3P (1.4 equiv), ICH2CH2I (1.4 equiv), R′SO2Na (2 equiv) in DMF (3
mL) at 80 °C for 15 min. bPh2PCH3 was used instead of Ph3P and the reaction temperature was 120 °C in the cases of alkyl alcohols (3q−3t).

Scheme 4. Gram-Scale Reaction

Scheme 5. Experimental Evidence

Scheme 6. Plausible Reaction Mechanism
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also directly activate alcohols, allowing for the subsequent
nucleophilic substitution (path II).
The sulfonylation process generates Ph3P�O, which may

cause some inconvenience for the product isolation by flash
column chromatography. Ph3P was therefore replaced with
(EtO)3P. We were hopeful that the (EtO)3P�O byproduct
could be removed by washing with water, which would be
helpful for the column chromatography isolation. The optimal
(EtO)3P/ICH2CH2I-promoted sulfonylation conditions were
identified after screening various effects (see Supporting
Information). Indeed, phosphorus-containing species were
almost completely removed by washing, and the desired
product was isolated in a 60% yield (Scheme 7). Due to a
lower reactivity of (EtO)3P, a two-step process is required.

In summary, we have described the dehydroxylative
sulfonylation of alcohols promoted by a R3P/ICH2CH2I
system. Various sulfonyl groups can be installed, such as
CF3SO2 and HCF2SO2, which are of interest in pharmaceutical
chemistry. The sulfonylation process could be applied to a
wide range of alcohols, including benzyl, allyl, propargyl, and
alkyl alcohols. This work may represent an efficient
sulfonylation protocol with a very wide substrate scope. The
protocol also features a low cost of reagents, wide availability of
alcohols, and rapid reaction rates. These features may make
this protocol attractive for the synthesis of SO2-containing
biologically active molecules.

■ EXPERIMENTAL SECTION
General Information. The 1H and 19F NMR spectra were

recorded on 400 MHz NMR spectrometers. 13C was obtained at 100
MHz. The chemical shifts (δ) for 1H, 13C, and 19F NMR were
reported as ppm. The spectral data were recorded as follows:
multiplicity (s = singlet, d = doublet, t= triplet, q = quartet, m =
multiplet, quin = quintet, coupling constant (s) in Hz). Low-
resolution mass spectrum (MS) was obtained on GC-MS (EI) or LC-
MS (ESI), and high-resolution mass spectrometry (HRMS) data were
measured on a Waters Premier GC-TOF MS instrument with an
electron impact (EI) ionization mode, or on a Thermo Scientific Q
Exactive HF Orbitrap-FTMS instrument with electrospray ionization
(ESI) mode. All reactions were monitored by TLC or 19F NMR. Flash
column chromatography was carried out using 300−400 mesh silica
gel at medium pressure. Melting points were measured on a melting
point apparatus. Unless otherwise noted, all reagents and solvents
were obtained commercially and used without further purification. All
reactions were performed in 25 mL sealed tube. The heat source is an
oil bath. All starting materials are commercially available, and were
purchased and directly used without further purification.
General Procedure for the Dehydroxylative Sulfonylation

of Alcohols. Sulfonylation of Alcohols with Fluoroalkylsulfinates.
Into a solution of alcohol 1 (0.5 mmol, 1.0 equiv) and Ph3P (0.7
mmol, 183.6 mg, 1.4 equiv) (if alkyl alcohols (2q−2r) were used as
substrates, Ph2PCH3 (0.7 mmol, 140.2 mg, 1.4 equiv) was used
instead of Ph3P and the reaction temperature was 120 °C) in DMF (3
mL) in a 25 mL sealed tube was added ICH2CH2I (0.7 mmol, 197.3
mg, 1.4 equiv) under a N2 atmosphere. After the reagents were
completely dissolved, RFSO2Na (RF = CF3 or HCF2) (1.5 mmol, 3.0
equiv) was added. The tube was sealed and the resulting mixture was
stirred at 80 °C for 15 min (oil bath). The reaction mixture was
cooled to room temperature. Dichloromethane was added and the

resulting solution was washed with water. The organic layer was
removed by concentration under reduced pressure and the residue
was subjected to flash column chromatography to give products.

4-[[(Trifluoromethyl)sulfonyl]methyl]-1,1′-biphenyl16f (2a). The
crude product was purified by column chromatography on silica gel
(PE:EA = 50:1) to afford 4-[[(Trifluoromethyl)sulfonyl]methyl]-1,1′-
biphenyl 2a (108 mg, 72% yield) as a white solid. 1H NMR (400
MHz, CDCl3) δ 7.67 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H),
7.54−7.43 (m, 4H), 7.39 (t, J = 7.3 Hz, 1H), 4.53 (s, 2H). 19F NMR
(376 MHz, CDCl3) δ −76.39 (s, 3F). 13C{1H} NMR (101 MHz,
CDCl3) δ 143.0, 139.9, 131.7, 128.9, 128.0, 127.2, 121.8, 119.8 (q, J =
328.3 Hz), 55.9.

4-t-Butylbenzyl triflone19 (2b). The crude product was purified by
column chromatography on silica gel (PE:EA = 60:1) to afford 4-t-
butylbenzyl triflone (2b) (85 mg, 61% yield) as a yellow solid. 1H
NMR (400 MHz, CDCl3) δ 7.51−7.44 (m, 2H), 7.39−7.33 (m, 2H),
4.46 (s, 2H), 1.34 (s, 9H). 19F NMR (376 MHz, CDCl3) δ −76.63 (s,
3F). 13C{1H} NMR (101 MHz, CDCl3) δ 153.3, 131.0, 126.3, 119.8,
119.8 (q, J = 328.3 Hz), 55.7, 34.8, 31.2.

5-(((Trifluoromethyl)sulfonyl)methyl)benzo[d][1,3]dioxole (2c).
The crude product was purified by column chromatography on silica
gel (PE:EA = 40:1) to afford 5-(((trifluoromethyl)sulfonyl)methyl)-
benzo[d][1,3]dioxole (2c) (101 mg, 75% yield) as a white solid. mp
76.4−76.9 °C. 1H NMR (400 MHz, CDCl3) δ 6.94−6.82 (m, 3H),
6.24−5.74 (m, 3H), 4.39 (s, 2H). 19F NMR (376 MHz, CDCl3) δ
−76.38 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ 149.3, 148.4,
125.5, 119.8 (q, J = 328.6 Hz), 116.0, 111.1, 108.9, 101.7, 56.0.
HRMS (FI) m/z [M]+ calcd for C9H7F3O4S 268.0012, found
268.0016. IR (KBr) (cm−1) 3007, 2957, 2900, 2781, 1855, 1742,
1503, 1450, 1410, 1444, 1360, 1340, 1246, 1220, 1199, 1149, 1122,
1069, 1037, 926, 873, 817, 781, 736, 665, 655.

1-Methoxy-3-(((trifluoromethyl)sulfonyl)methyl)benzene (2d).
The crude product was purified by column chromatography on silica
gel (PE:EA = 20:1) to afford 1-methoxy-3-(((trifluoromethyl)-
sulfonyl)methyl)benzene (2d) (93 mg, 73% yield) as a yellow solid.
mp 44.3−44.6 °C. 1H NMR (400 MHz, CDCl3) δ 7.34 (t, J = 7.9 Hz,
1H), 7.06−6.91 (m, 3H), 4.45 (s, 2H), 3.82 (s, 3H). 19F NMR (376
MHz, CDCl3) δ −76.58 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ
160.1, 130.3, 124.3, 123.5, 119.8 (q, J = 328.2 Hz), 116.7, 115.7, 56.1,
55.3. HRMS (FI) m/z [M]+ calcd for C9H9F3O3S 254.0219, found
254.0223. IR (KBr) (cm−1) 2943, 2841, 1602, 1587, 1492, 1457,
1438, 1409, 1365, 1321, 1301, 1271, 1219, 1167, 1152, 1119, 1048,
996, 938, 920, 874, 791, 692, 649.

4-(Methoxycarbonyl)benzyl triflone19 (2e). The crude product
was purified by column chromatography on silica gel (PE:EA = 10:1)
to afford methyl 4-(methoxycarbonyl)benzyl triflone (2e) (108 mg,
77% yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.09 (d, J
= 8.1 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 4.53 (s, 2H), 3.93 (s, 3H).
19F NMR (376 MHz, CDCl3) δ −76.39 (s, 3F). 13C{1H} NMR (101
MHz, CDCl3) δ 166.2, 131.8, 131.3, 130.4, 128.0, 119.7 (q, J = 328.0
Hz), 55.8, 52.4.

4-Trifluoromethylphenylmethyl trifluoromethyl sulfone20 (2f).
The crude product was purified by column chromatography on silica
gel (PE:EA = 15:1) to afford 4-trifluoromethylphenylmethyl
trifluoromethyl sulfone (2f) (107 mg, 73% yield) as a white solid.
1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.1 Hz, 2H), 7.57 (d, J =
8.1 Hz, 2H), 4.53 (s, 2H). 19F NMR (376 MHz, CDCl3) δ −63.08 (s,
3F), −76.40 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ 132.3 (q, J
= 33.0 Hz), 131.7, 127.3, 126.2 (q, J = 3.7 Hz), 123.6 (d, J = 272.5
Hz), 119.7 (d, J = 328.0 Hz), 55.5.

1,3-Dichloro-2-(((trifluoromethyl)sulfonyl)methyl)benzene (2g).
The crude product was purified by column chromatography on silica
gel (PE:EA = 10:1) to afford 1,3-dichloro-2-(((trifluoromethyl)-
sulfonyl)methyl)benzene (2g) (88 mg, 60% yield) as a colorless
transparent oil. 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.3 Hz,
2H), 7.34 (dd, J = 8.8, 7.3 Hz, 1H), 5.03 (s, 2H). 19F NMR (376
MHz, CDCl3) δ −78.16 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ
137.6, 131.7, 129.0, 122.2, 119.6 (q, J = 328.1 Hz), 51.9. HRMS (FI)
m/z [M]+ calcd for C8H5

35Cl2F3O2S 291.9334, found 291.9331. IR

Scheme 7. Use of (EtO)3P Instead of Ph3P
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(KBr) (cm−1) 3087, 3002, 2951, 1581, 1565, 1440, 1402, 1373, 1209,
1120, 1093, 977, 888, 873, 832, 782, 766, 698, 642.
1-Iodo-2-(((trifluoromethyl)sulfonyl)methyl)benzene (2h). The

crude product was purified by column chromatography on silica gel
(PE:EA = 20:1) to afford 1-iodo-2-(((trifluoromethyl)sulfonyl)-
methyl)benzene (2h) (122 mg, 70% yield) as a yellow oil. 1H
NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 8.0, 1.3 Hz, 1H), 7.53 (dd, J
= 7.7, 1.7 Hz, 1H), 7.43 (td, J = 7.6, 1.3 Hz, 1H), 7.13 (td, J = 7.7, 1.7
Hz, 1H), 4.79 (s, 2H). 19F NMR (376 MHz, CDCl3) δ −77.28 (s,
3F). 13C{1H} NMR (101 MHz, CDCl3) δ 140.7, 132.3, 131.5, 129.0,
127.4, 119.7 (q, J = 328.0 Hz), 102.3, 59.9. HRMS (FI) m/z [M]+
calcd for C8H6F3IO2S 349.9080, found 349.9085. IR (KBr) (cm−1)
2935, 1587, 1566, 1471, 1438, 1405, 1367, 1277, 1220, 1148, 1120,
1047, 1016, 858, 767, 731, 702, 649, 628, 606, 561, 527.
1-Bromo-4-(((4-trifluoromethyl)sulfonyl)methyl)benzene21 (2i).

The crude product was purified by column chromatography on silica
gel (PE:EA = 10:1) to afford 1-bromo-4-(((4-trifluoromethyl)-
sulfonyl)methyl)benzene (2i) (107 mg, 71% yield) as white solid.
1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.3 Hz, 2H), 7.30 (d, J =
8.3 Hz, 2H), 4.43 (s, 2H). 19F NMR (376 MHz, CDCl3) δ −76.30 (s,
3F). 13C{1H} NMR (101 MHz, CDCl3) δ 132.8, 132.6, 124.8, 122.1,
119.7 (q, J = 328.2 Hz), 55.5.
1,3,5-Trimethyl-2-[[(trifluoromethyl)sulfonyl]methyl]benzene20

(2j). The crude product was purified by column chromatography on
silica gel (PE:EA = 80:1) to afford 1,3,5-trimethyl-2-
[[(trifluoromethyl)sulfonyl]methyl]benzene (2j) (107 mg, 80%
yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 6.97 (s,
2H), 4.63 (s, 2H), 2.44 (s, 6H), 2.30 (s, 3H). 19F NMR (376 MHz,
CDCl3) δ −78.54 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ
139.9, 139.7, 129.9, 120.0 (q, J = 328.3 Hz), 117.0, 49.8, 21.0, 20.3.
2-(((Trifluoromethyl)sulfonyl)methyl)benzo[b]thiophene (2k).

The crude product was purified by column chromatography on silica
gel (PE:EA = 15:1) to afford 2-(((trifluoromethyl)sulfonyl)methyl)-
benzo[b]thiophene (2k) (106 mg, 76% yield) as a white solid. mp
162.5−163.0 °C. 1H NMR (400 MHz, CDCl3) δ 7.88−7.78 (m, 2H),
7.48 (s, 1H), 7.45−7.36 (m, 2H), 4.79 (s, 2H). 19F NMR (376 MHz,
CDCl3) δ −75.71 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ
141.1, 139.1, 129.0, 125.7, 125.0, 124.2, 123.8, 122.3, 119.8 (q, J =
328.7 Hz), 51.9. HRMS (FI) m/z [M]+ calcd for C10H7F3O2S2
279.9834, found 279.9832. IR (KBr) (cm−1) 2998, 1758, 1361, 1346,
1241, 1221, 1197, 1124, 1050, 773, 734, 522.
2-(((Trifluoromethyl)sulfonyl)methyl)benzofuran (2l). The crude

product was purified by column chromatography on silica gel (PE:EA
= 15:1) to afford 2-(((trifluoromethyl)sulfonyl)methyl)benzofuran
(2l) (136 mg, 78% yield) as a light yellow solid. mp 109.8−110.0 °C.
1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.7 Hz, 1H), 7.52 (d, J =
8.3 Hz, 1H), 7.36 (tt, J = 8.3, 1.2 Hz, 1H), 7.31−7.25 (m, 1H), 4.74
(s, 2H). 19F NMR (376 MHz, CDCl3) δ −76.14 (s, 3F). 13C{1H}
NMR (101 MHz, CDCl3) δ 155.8, 140.4, 127.6, 125.9, 123.6, 121.6,
119.6 (q, J = 328.4 Hz), 111.6, 110.9, 50.5. HRMS (FI) m/z [M]+
calcd for C10H7F3O3S 264.0063, found 264.0057. IR (KBr) (cm−1)
3116, 2989, 2926, 2360, 2341, 1453, 1395, 1368, 1353, 1321, 1261,
1220, 1194, 1155, 1118, 953, 942, 758, 757, 668, 635.
N-(4-(4-Fluorophenyl)-6-isopropyl-5-(((trifluoromethyl)sulfonyl)-

methyl)pyrimidin-2-yl)-N-methylmethanesulfonamide (2m). The
crude product was purified by column chromatography on silica gel
(PE:EA = 5:1) to afford N-(4-(4-fluorophenyl)-6-isopropyl-5-
(((trifluoromethyl)sulfonyl)methyl)pyrimidin-2-yl)-N-methylmetha-
nesulfonamide (2m) (136 mg, 58% yield) as a yellow solid. mp
153.7−154.6 °C. 1H NMR (400 MHz, CDCl3) δ 7.57−7.48 (m, 2H),
7.22−7.13 (m, 2H), 4.68 (s, 2H), 3.56 (s, 3H), 3.50 (s, 3H), 3.39
(hept, J = 6.5 Hz, 1H), 1.35 (d, J = 6.5 Hz, 7H). 19F NMR (376 MHz,
CDCl3) δ −78.12 (s, 3F), −110.48 − −110.53 (m, 1F). 13C{1H}
NMR (101 MHz, CDCl3) δ 178.6, 169.4, 163.6 (d, J = 250.7 Hz),
158.8, 133.2 (d, J = 3.3 Hz), 130.8 (d, J = 8.6 Hz), 119.5 (q, J = 328.2
Hz), 115.9 (d, J = 21.8 Hz), 106.3, 48.5, 42.5, 33.2, 32.7, 22.0. HRMS
(FI) m/z [M]+ calcd for C17H19F4N3O4S2 469.0748, found 469.0751.
IR (KBr) (cm−1) 2975, 2875, 1607, 1550, 1511, 1443, 1379, 1342,
1223, 1157, 1120, 1068, 963, 910, 836, 774, 734, 635, 619.

2-(1-((Trifluoromethyl)sulfonyl)ethyl)naphthalene (2n). The
crude product was purified by column chromatography on silica gel
(PE:EA = 20:1) to afford 2-(1-((trifluoromethyl)sulfonyl)ethyl)-
naphthalene (2n) (41 mg, 29% yield) as a white solid. mp 49.2−50.0
°C. 1H NMR (400 MHz, CDCl3) δ 7.96−7.84 (m, 4H), 7.64−7.48
(m, 3H), 4.73 (q, J = 7.2 Hz, 1H), 1.99 (d, J = 7.2 Hz, 3H). 19F NMR
(376 MHz, CDCl3) δ −73.44 (s, 3F). 13C{1H} NMR (101 MHz,
CDCl3) δ 133.8, 133.1, 129.7, 129.1, 128.2, 127.8, 127.7, 127.4, 126.9,
126.0, 120.1 (q, J = 329.8 Hz), 62.6, 14.7. HRMS (FI) m/z [M]+
calcd for C13H11F3O2S 288.0426, found 288.0423. IR (KBr) (cm−1)
3060, 2918, 2849, 1507, 1456, 1355, 1210, 1115, 1046, 913, 860, 818,
771, 748, 697, 650, 621, 609.

1-Bromo-4-(1-((trifluoromethyl)sulfonyl)ethyl)benzene (2o). The
crude product was purified by column chromatography on silica gel
(PE:EA = 40:1) to afford 1-bromo-4-(1-((trifluoromethyl)sulfonyl)-
ethyl)benzene (2o) (59 mg, 37% yield) as a yellow transparent oil. 1H
NMR (400 MHz, CDCl3) 1H NMR (400 MHz, Chloroform-d) δ
7.57 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 4.52 (q, J = 7.2 Hz,
1H), 1.86 (d, J = 7.2 Hz, 3H). 19F NMR (376 MHz, CDCl3) δ
−73.38 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ 132.4, 131.1,
129.3, 124.6, 120.0 (q, J = 329.8 Hz), 61.7, 14.4. HRMS (FI) m/z
[M]+ calcd for C9H8

79BrF3O2S 315.9375, found 315.9377. IR (KBr)
(cm−1) 2998, 2947, 1906, 1685, 1592, 1490, 1459, 1408, 1359, 1321,
1209, 1114, 1076, 1050, 1012, 829, 789, 762,748, 722, 690.

(E)-(3-(Trifluoromethyl)sulfonyl)prop-1-en-1-yl)benzene9f (2p).
The crude product was purified by column chromatography on silica
gel (PE:EA = 25:1) to afford (E)-(3-(trifluoromethyl)sulfonyl)prop-
1-en-1-yl)benzene (2p) (67 mg, 56% yield) as a yellow solid. 1H
NMR (400 MHz, CDCl3) δ 7.46−7.41 (m, 3H), 7.40−7.31 (m, 2H),
6.82 (d, J = 15.8 Hz, 1H), 6.15 (dt, J = 15.5, 7.6 Hz, 1H), 4.15 (d, J =
7.6 Hz, 2H). 19F NMR (376 MHz, CDCl3) δ −76.25 (s, 3F). 13C{1H}
NMR (101 MHz, CDCl3) δ 141.7, 135.0, 129.3, 128.9, 127.0, 119.7
(q, J = 328.5 Hz), 110.2, 54.5.

(4-((Trifluoromethyl)sulfonyl)butyl)benzene (2q). The crude
product was purified by column chromatography on silica gel
(PE:EA = 20:1) to afford (4-((trifluoromethyl)sulfonyl)butyl)-
benzene (2q) (53 mg, 40% yield) as a colorless transparent oil. 1H
NMR (400 MHz, CDCl3) δ 7.33−7.26 (m, 2H), 7.25−7.13 (m, 3H),
3.20 (t, J = 7.9 Hz, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.01−1.91 (m, 2H),
1.81 (quin, J = 7.5 Hz, 2H). 19F NMR (376 MHz, CDCl3) δ −78.25
(s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ 140.7, 128.6, 128.4,
126.3, 119.5 (q, J = 327.1 Hz), 49.5, 35.1, 30.0, 20.3. HRMS (FI) m/z
[M]+ calcd for C11H13F3O2S 266.0583, found 266.0587. IR (KBr)
(cm−1) 2930, 1497, 1455, 1363, 1219, 1121, 913, 772, 670, 612, 537.

2,3-Dimethoxy-5-methyl-6-(10-((trifluoromethyl)sulfonyl)decyl)-
cyclohexa-2,5-diene-1,4-dione (2r). The crude product was purified
by column chromatography on silica gel (PE:EA = 10:1) to afford 2,3-
dimethoxy-5-methyl-6-(10-((trifluoromethyl)sulfonyl)decyl)-
cyclohexa-2,5-diene-1,4-dione (2r) (101 mg, 44% yield) as an orange
yellow transparent oil. 1H NMR (400 MHz, CDCl3) δ 3.97 (s, 3H),
3.96 (s, 3H), 3.20 (t, J = 8.0 Hz, 2H), 2.43 (t, J = 7.4 Hz, 2H), 1.99 (s,
3H), 1.52−1.42 (m, 2H), 1.41−1.21 (m, 14H). 19F NMR (376 MHz,
CDCl3) δ −78.25 (s, 3F). 13C{1H} NMR (101 MHz, CDCl3) δ
184.7, 184.2, 144.3, 144.3, 143.0, 138.7, 119.5 (q, J = 327.2 Hz), 61.1,
49.6, 29.7, 29.2, 29.2, 29.1, 28.8, 28.7, 28.3, 26.4, 20.7, 11.9. HRMS
(FI) m/z [M]+ calcd for C20H29F3O6S 454.1631, found 454.1635. IR
(KBr) (cm−1) 2929, 2856, 1650, 1611, 1457, 1364, 1267, 1219, 1123,
1072, 772, 617.

4-(((Difluoromethyl)sulfonyl)methyl)-1,1′-biphenyl (2s). The
crude product was purified by column chromatography on silica gel
(PE:EA = 5:1) to afford 4-(((difluoromethyl)sulfonyl)methyl)-1,1′-
biphenyl (2s) (120 mg, 85% yield) as a white solid. mp 164.1−164.7
°C. 1H NMR (400 MHz, CDCl3) δ 7.67−7.63 (m, 2H), 7.62−7.57
(m, 2H), 7.53−7.42 (m, 4H), 7.43−7.34 (m, 1H), 6.16 (t, J = 52.8
Hz, 1H), 4.45 (s, 2H). 19F NMR (376 MHz, CDCl3) δ −123.00 (d, J
= 52.6 Hz, 2F). 13C{1H} NMR (101 MHz, CDCl3) δ 142.7, 140.0,
131.7, 128.9, 128.0, 127.9, 127.2, 122.7, 114.7 (t, J = 286.4 Hz), 54.4.
HRMS (FI) m/z [M]+ calcd for C14H12F2O2S 282.0521, found
282.0527. IR (KBr) (cm−1) 3033, 2408, 1545, 1444, 1339, 1316,
1220, 1171, 1150, 1113, 913, 781, 686, 674, 505.
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Methyl 4-(((difluoromethyl)sulfonyl)methyl)benzoate (2t). The
crude product was purified by column chromatography on silica gel
(PE:EA = 5:1) to afford methyl 4-(((difluoromethyl)sulfonyl)-
methyl)benzoate (2t) (110 mg, 90% yield) as a yellow solid. mp
79.3−80.1 °C. 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.3 Hz,
2H), 7.46 (d, J = 8.3 Hz, 2H), 6.15 (t, J = 52.6 Hz, 1H), 4.42 (s, 2H),
3.89 (s, 3H). 19F NMR (376 MHz, CDCl3) δ −122.52 (d, J = 52.4
Hz, 2F). 13C{1H} NMR (101 MHz, CDCl3) δ 166.3, 131.3, 130.2,
129.0, 114.9 (t, J = 286.5 Hz), 54.2, 52.4. HRMS (FI) m/z [M]+ calcd
for C10H10F2O4S 264.0262, found 264.0264. IR (KBr) (cm−1) 3001,
2949, 1720, 1438, 1418, 1343, 1313, 1284, 1219, 1171, 1152, 1116,
913, 772.
1-(((Difluoromethyl)sulfonyl)methyl)-3-methoxybenzene (2u).

The crude product was purified by column chromatography on silica
gel (PE:EA = 5:1) to afford 1-(((difluoromethyl)sulfonyl)methyl)-3-
methoxybenzene (2u) (85 mg, 72% yield) as a yellow oil. mp 51.7−
52.4 °C. 1H NMR (400 MHz, CDCl3) δ 7.33 (t, J = 7.8 Hz, 1H),
7.02−6.91 (m, 3H), 6.12 (t, J = 52.8 Hz, 1H), 4.36 (s, 2H), 3.82 (s,
3H). 19F NMR (376 MHz, CDCl3) δ −123.41 (d, J = 52.7 Hz, 2F).
13C{1H} NMR (101 MHz, CDCl3) δ 160.1, 130.2, 125.3, 123.4,
116.7, 115.4, 114.4 (t, J = 286.1 Hz), 55.4, 54.7. HRMS (FI) m/z
[M]+ calcd for C9H10F2O3S 236.0313, found 236.0316. IR (KBr)
(cm−1) 3033, 2408, 1545, 1442, 1344, 1220, 1101, 1036, 914, 781,
685, 674.
2-(((Difluoromethyl)sulfonyl)methyl)benzo[b]thiophene (2v).

The crude product was purified by column chromatography on silica
gel (PE:EA = 5:1) to afford 2-(((difluoromethyl)sulfonyl)methyl)-
benzo[b]thiophene (2v) (106 mg, 81% yield) as a yellow solid. mp
118.3−119.1 °C. 1H NMR (400 MHz, CDCl3) δ 7.89−7.74 (m, 2H),
7.46 (s, 1H), 7.43−7.35 (m, 2H), 6.23 (t, J = 52.7 Hz, 1H), 4.70 (s,
2H). 19F NMR (376 MHz, CDCl3) δ −122.73 (d, J = 52.8 Hz, 2F).
13C{1H} NMR (101 MHz, CDCl3) δ 141.0, 139.2, 128.6, 125.5,
125.0, 124.1, 122.3, 114.5 (t, J = 286.8 Hz), 50.4. HRMS (FI) m/z
[M]+ calcd for C10H8F2O2S2 261.9928, found 261.9930. IR (KBr)
(cm−1) 2993, 1434, 1347, 1219, 1170, 1155, 1115, 912, 777, 686, 674,
570.
(E)-(3-((Difluoromethyl)sulfonyl)prop-1-en-1-yl)benzene (2w).

The crude product was purified by column chromatography on silica
gel (PE:EA = 5:1) to afford (E)-(3-((difluoromethyl)sulfonyl)prop-1-
en-1-yl)benzene (2w) (96 mg, 83% yield) as a yellow solid. mp 67.3−
68.2 °C. 1H NMR (400 MHz, CDCl3) δ 7.50−7.28 (m, 5H), 6.80 (d,
J = 15.8 Hz, 1H), 6.21 (t, J = 52.3 Hz, 1H), 6.20−6.12 (m, 1H), 4.06
(dd, J = 7.7, 1.3 Hz, 2H). 19F NMR (376 MHz, CDCl3) δ −122.88
(d, J = 52.4 Hz, 2F). 13C{1H} NMR (101 MHz, CDCl3) δ 141.0,
135.2, 129.1, 128.8, 126.9, 114.9 (t, J = 286.5 Hz), 111.1, 53.0. HRMS
(FI) m/z [M]+ calcd for C10H10F2O2S 232.0364, found 232.0370. IR
(KBr) (cm−1) 3032, 1496, 1450, 1347, 1219, 1103, 968, 772, 691,
623.
Sulfonylation of Alcohols with Nonfluorosulfinates. Into a

solution of alcohol 1 (0.5 mmol, 1.0 equiv) and Ph3P (0.7 mmol,
183.6 mg, 1.4 equiv) (if alkyl alcohols (3q−3t) were used as
substrates, Ph2PCH3 (0.7 mmol, 140.2 mg, 1.4 equiv) was used
instead of Ph3P and the reaction temperature was 120 °C) in DMF (3
mL) in a 25 mL sealed tube was added ICH2CH2I (0.7 mmol, 197.3
mg, 1.4 equiv) under a N2 atmosphere. After the reagents were
completely dissolved, R′SO2Na (1.0 mmol, 2.0 equiv) was added. The
tube was sealed and the resulting mixture was stirred at 80 °C for 15
min (oil bath). The reaction mixture was cooled to room temperature.
Dichloromethane was added and the resulting solution was washed
with water. The organic layer was removed by concentration under
reduced pressure and the residue was subjected to flash column
chromatography to give products.
4-[(Phenylsulfonyl)methyl]-1,1′-biphenyl22 (3a). The crude prod-

uct was purified by column chromatography on silica gel (PE:EA =
5:1) to afford 4-[(phenylsulfonyl)methyl]-1,1′-biphenyl (3a) (139
mg, 90% yield) as a light yellow solid. 1H NMR (400 MHz, CDCl3) δ
7.69 (d, J = 8.0 Hz, 2H), 7.64−7.54 (m, 3H), 7.53−7.41 (m, 6H),
7.36 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 4.36 (s, 2H).
13C{1H} NMR (101 MHz, CDCl3) δ 141.7, 140.2, 138.0, 133.8,
131.3, 129.0, 128.9, 128.7, 127.7, 127.3, 127.1, 127.0, 62.6.

4-(Tosylmethyl)-1,1′-biphenyl23 (3b). The crude product was
purified by column chromatography on silica gel (PE:EA = 5:1) to
afford 4-(tosylmethyl)-1,1′-biphenyl (3b) (150 mg, 97% yield) as a
white solid. 1H NMR (400 MHz, CDCl3) δ 7.59−7.53 (m, 4H), 7.49
(d, J = 8.1 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H),
7.24 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 4.32 (s, 2H), 2.41
(s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 144.8, 141.6, 140.3,
135.1, 131.3, 129.6, 128.9, 128.7, 127.7, 127.2, 127.2, 127.1, 62.7,
21.7.

4-(((4-Chlorophenyl)sulfonyl)methyl)-1,1′-biphenyl (3c). The
crude product was purified by column chromatography on silica gel
(PE:EA = 5:1) to afford 4-(((4-chlorophenyl)sulfonyl)methyl)-1,1′-
biphenyl (3c) (151 mg, 88% yield) as a white solid. mp 229.6−230.1
°C. 1H NMR (400 MHz, CDCl3) δ 7.64−7.55 (m, 4H), 7.54−7.50
(m, 2H), 7.48−7.41 (m, 4H), 7.40−7.34 (m, 1H), 7.17 (d, J = 8.6 Hz,
2H), 4.35 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 141.8, 140.6,
140.1, 136.4, 131.2, 130.2, 129.3, 128.9, 127.8, 127.4, 127.1, 126.7,
62.7. HRMS (FI) m/z [M]+ calcd for C19H15

35ClO2S 342.0476, found
342.0480. IR (KBr) (cm−1) 1313, 1219, 1153, 831, 772, 527.

4-(((4-Nitrophenyl)sulfonyl)methyl)-1,1′-biphenyl (3d). The
crude product was purified by column chromatography on silica gel
(PE:EA = 8:1) to afford 4-(((4-nitrophenyl)sulfonyl)methyl)-1,1′-
biphenyl (3d) (173 mg, 98% yield) as a yellow solid. mp 242.5−242.7
°C. 1H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 8.4 Hz, 2H), 7.86 (d,
J = 8.4 Hz, 2H), 7.61−7.50 (m, 4H), 7.45 (t, J = 7.57 Hz, 2H), 7.38
(t, J = 7.7 Hz, 1H), 7.17 (d, J = 7.8 Hz, 2H), 4.42 (s, 2H). 13C{1H}
NMR (101 MHz, CDCl3) δ 150.9, 143.5, 142.2, 139.8, 131.2, 130.2,
129.0, 127.9, 127.5, 127.1, 126.0, 124.1, 62.6. HRMS (ESI) m/z [M +
Na]+ calcd for C19H15NNaO4S 376.0614, found 376.0614. IR (KBr)
(cm−1) 1523, 1306, 1219, 1150, 845, 772, 690, 522.

4-(Methoxycarbonyl)benzyl phenyl sulfone24 (3e). The crude
product was purified by column chromatography on silica gel (PE:EA
= 3:1) to afford 4-(methoxycarbonyl)benzyl phenyl sulfone (3e) (153
mg, 94% yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.91
(d, J = 8.2 Hz, 2H), 7.66−7.56 (m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 7.14
(d, J = 8.2 Hz, 2H), 4.35 (s, 2H), 3.89 (s, 3H). 13C{1H} NMR (101
MHz, CDCl3) δ 166.5, 137.6, 134.0, 133.1, 130.9, 130.5, 129.8, 129.1,
128.6, 62.7, 52.3.

1-Methoxy-3-((phenylsulfonyl)methyl)benzene25 (3f). The crude
product was purified by column chromatography on silica gel (PE:EA
= 3:1) to afford 1-methoxy-3-((phenylsulfonyl)methyl)benzene (3f)
(112 mg, 86% yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ
7.67−7.63 (m, 2H), 7.62−7.57 (m, 1H), 7.45 (t, J = 7.9 Hz, 2H),
7.15 (t, J = 7.9 Hz, 1H), 6.89−6.79 (m, 1H), 6.68−6.55 (m, 2H),
4.28 (s, 2H), 3.69 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ
159.6, 137.9, 133.7, 129.6, 129.4, 128.9, 128.7, 123.2, 115.9, 114.8,
62.9, 55.2.

4-((Ethylsulfonyl)methyl)-1,1′-biphenyl (3g). The crude product
was purified by column chromatography on silica gel (PE:EA = 4:1)
to afford 4-((ethylsulfonyl)methyl)-1,1′-biphenyl (3g) (96 mg, 73%
yield) as a yellow solid. mp 170.2−170.4 °C. 1H NMR (400 MHz,
CDCl3) δ 7.66−7.56 (m, 4H), 7.52−7.42 (m, 4H), 7.42−7.33 (m,
1H), 4.27 (s, 2H), 2.91 (q, J = 7.5 Hz, 2H), 1.39 (t, J = 7.5 Hz, 3H).
13C{1H} NMR (101 MHz, CDCl3) δ 142.0, 140.2, 131.0, 128.9,
127.8, 127.8, 127.1, 126.9, 58.4, 45.6, 6.5. HRMS (FI) m/z [M]+
calcd for C15H16O2S 260.0866, found 260.0864. IR (KBr) (cm−1)
2360, 1312, 1219, 1123, 772, 687, 674.

4-((Cyclopropylsulfonyl)methyl)-1,1′-biphenyl (3h). The crude
product was purified by column chromatography on silica gel (PE:EA
= 4:1) to afford 4-((cyclopropylsulfonyl)methyl)-1,1′-biphenyl (3h)
(107 mg, 79% yield) as a yellow solid. mp 142.2−143.0 °C. 1H NMR
(400 MHz, CDCl3) δ 7.68−7.57 (m, 4H), 7.55−7.42 (m, 4H), 7.41−
7.34 (m, 1H), 4.31 (s, 2H), 2.33−2.21 (m, 1H), 1.22−1.12 (m, 2H),
1.04−0.92 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 141.8,
140.2, 131.3, 128.9, 127.7, 127.6, 127.2, 127.1, 60.0, 28.4, 4.9. HRMS
(FI) m/z [M]+ calcd for C16H16O2S 272.0866, found 272.0863. IR
(KBr) (cm−1) 3053, 1409, 1317, 1281, 1219, 1160, 1139, 1127, 913,
849, 834, 777, 735, 687, 674.

(E)-(3-(Ethylsulfonyl)prop-1-en-1-yl)benzene11d (3i). The crude
product was purified by column chromatography on silica gel (PE:EA
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= 3:1) to afford (E)-(3-(ethylsulfonyl)prop-1-en-1-yl)benzene (3i)
(75 mg, 71% yield) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ
7.41 (d, J = 7.4 Hz, 2H), 7.38−7.25 (m, 3H), 6.70 (d, J = 15.9 Hz,
1H), 6.26 (dt, J = 15.4, 7.6 Hz, 1H), 3.86 (d, J = 7.6 Hz, 2H), 3.02 (q,
J = 7.5 Hz, 2H), 1.40 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (101 MHz,
CDCl3) δ 138.8, 135.6, 128.8, 128.8, 126.7, 115.5, 56.6, 45.8, 6.5.
(E)-(3-(Cyclopropylsulfonyl)prop-1-en-1-yl)benzene11d (3j). The

crude product was purified by column chromatography on silica gel
(PE:EA = 3:1) to afford (E)-(3-(cyclopropylsulfonyl)prop-1-en-1-
yl)benzene (3j) (76 mg, 68% yield) as a yellow solid. 1H NMR (400
MHz, CDCl3) δ 7.43−7.39 (m, 2H), 7.37−7.25 (m, 3H), 6.72 (d, J =
15.7 Hz, 1H), 6.28 (dt, J = 15.7, 7.6 Hz, 1H), 3.91 (d, J = 7.6 Hz,
2H), 2.47−2.39 (m, 1H), 1.28−1.21 (m, 2H), 1.06−0.98 (m, 2H).
13C{1H} NMR (101 MHz, CDCl3) δ 138.8, 135.8, 128.8, 128.6,
126.7, 115.5, 58.2, 28.5, 4.7.
Cinnamylsulfonylbenzene26 (3k). The crude product was purified

by column chromatography on silica gel (PE:EA = 5:1) to afford
cinnamylsulfonylbenzene (3k) (105 mg, 81% yield) as a yellow solid.
1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.3 Hz, 2H), 7.67−7.58
(m, 1H), 7.56−7.48 (m, 2H), 7.34−7.20 (m, 5H), 6.36 (d, J = 15.7
Hz, 1H), 6.09 (dt, J = 15.7, 7.6 Hz, 1H), 3.95 (d, J = 7.6 Hz, 2H).
13C{1H} NMR (101 MHz, CDCl3) δ 139.2, 138.4, 135.8, 133.8,
129.1, 128.7, 128.6, 128.5, 126.6, 115.2, 60.5.
1-Chloro-4-(cinnamylsulfonyl)benzene11d (3l). The crude prod-

uct was purified by column chromatography on silica gel (PE:EA =
6:1) to afford 1-chloro-4-(cinnamylsulfonyl)benzene (3l) (117 mg,
80% yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J
= 7.7 Hz, 2H), 7.48 (d, J = 7.7 Hz, 2H), 7.36−7.22 (m, 5H), 6.38 (d,
J = 15.9 Hz, 1H), 6.08 (dt, J = 15.9, 7.6 Hz, 1H), 3.94 (d, J = 7.6 Hz,
2H). 13C{1H} NMR (101 MHz, CDCl3) δ 140.6, 139.5, 136.9, 135.6,
130.1, 129.5, 128.8, 128.7, 126.7, 114.8, 60.5.
1-(Cinnamylsulfonyl)-4-nitrobenzene11d (3m). The crude product

was purified by column chromatography on silica gel (PE:EA = 5:1)
to afford 1-(cinnamylsulfonyl)-4-nitrobenzene (3m) (150 mg, 99%
yield) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 8.37 (d, J =
8.7 Hz, 2H), 8.08 (d, J = 8.7 Hz, 2H), 7.43−7.17 (m, 5H), 6.40 (d, J
= 15.8 Hz, 1H), 6.10 (dt, J = 15.8, 7.6 Hz, 1H), 4.02 (d, J = 7.6 Hz,
2H). 13C{1H} NMR (101 MHz, CDCl3) δ 150.9, 144.0, 140.1, 135.2,
130.1, 129.0, 128.8, 126.7, 124.3, 114.0, 60.5.
(3-Phenylprop-2-ynylsulfonyl)benzene27 (3n). The crude product

was purified by column chromatography on silica gel (PE:EA = 8:1)
to afford (3-phenylprop-2-ynylsulfonyl)benzene (3n) (121 mg, 95%
yield) as a yellow solid. mp 110.1−110.8 °C 1H NMR (400 MHz,
CDCl3) δ 8.11−7.95 (m, 2H), 7.75−7.66 (m, 1H), 7.64−7.53 (m,
2H), 7.37−7.27 (m, 5H), 4.19 (s, 2H). 13C{1H} NMR (101 MHz,
CDCl3) δ 137.8, 134.3, 131.8, 129.1, 129.1, 129.0, 128.4, 121.7, 87.7,
76.8, 49.5.
1-Chloro-4-((3-phenylprop-2-yn-1-yl)sulfonyl)benzene (3o). The

crude product was purified by column chromatography on silica gel
(PE:EA = 8:1) to afford 1-chloro-4-((3-phenylprop-2-yn-1-yl)-
sulfonyl)benzene (3o) (120 mg, 82% yield) as a white solid. mp
100.3−101.8 °C. 1H NMR (400 MHz, CDCl3) δ 8.03−7.91 (m, 2H),
7.60−7.48 (m, 2H), 7.39−7.27 (m, 5H), 4.20 (s, 2H). 13C{1H} NMR
(101 MHz, CDCl3) δ 141.1, 136.2, 131.8, 130.5, 129.5, 129.2, 128.5,
121.5, 87.9, 76.6, 49.5. HRMS (FI) m/z [M]+ calcd for
C15H11

35ClO2S 290.0163, found 290.0166. IR (KBr) (cm−1) 3087,
2953, 2908, 1583, 1490, 1475, 1443, 1395, 1327, 1281, 1220, 1165,
1141, 1088, 1014, 913, 873, 830, 771, 729, 691.
(3-(Cyclopropylsulfonyl)prop-1-yn-1-yl)benzene (3p). The crude

product was purified by column chromatography on silica gel (PE:EA
= 8:1) to afford (3-(cyclopropylsulfonyl)prop-1-yn-1-yl)benzene (3p)
(97 mg, 72% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ
7.51−7.43 (m, 2H), 7.40−7.29 (m, 3H), 4.13 (s, 2H), 2.78−2.64 (m,
1H), 1.40−1.32 (m, 2H), 1.17−1.09 (m, 2H). 13C{1H} NMR (101
MHz, CDCl3) δ 131.9, 129.1, 128.4, 121.8, 87.3, 76.7, 46.9, 28.9, 5.2.
HRMS (FI) m/z [M]+ calcd for C12H12O2S 220.0553, found
220.0548. IR (KBr) (cm−1) 3021, 2955, 2911, 1491, 1443, 1326,
1221, 1167, 1126, 1071, 1042, 913, 889, 785, 691, 674, 564, 501.
((4-Phenylbutyl)sulfonyl)benzene28 (3q). The crude product was

purified by column chromatography on silica gel (PE:EA = 8:1) to

afford ((4-phenylbutyl)sulfonyl)benzene (3q) (80 mg, 58% yield) as
a yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.7 Hz,
2H), 7.64 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.28−7.20 (m,
2H), 7.16 (t, J = 7.1 Hz, 1H), 7.08 (d, J = 7.5 Hz, 2H), 3.14−2.97 (m,
2H), 2.57 (t, J = 7.2 Hz, 2H), 1.82−1.62 (m, 4H). 13C{1H} NMR
(101 MHz, CDCl3) δ 141.2, 139.2, 133.7, 129.33, 128.4, 128.3, 128.1,
126.0, 56.1, 35.3, 30.0, 22.3.

1-Chloro-4-((4-phenylbutyl)sulfonyl)benzene (3r). The crude
product was purified by column chromatography on silica gel
(PE:EA = 6:1) to afford 1-chloro-4-((4-phenylbutyl)sulfonyl)benzene
(3r) (115 mg, 75% yield) as a white solid. mp 62.3−63.1 °C. 1H
NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5
Hz, 2H), 7.31−7.21 (m, 2H), 7.21−7.15 (m, 1H), 7.09 (d, J = 7.1 Hz,
2H), 3.12−3.04 (m, 2H), 2.59 (t, J = 7.0 Hz, 2H), 1.81−1.64 (m,
4H). 13C{1H} NMR (101 MHz, CDCl3) δ 141.1, 140.4, 137.7, 129.6,
129.6, 128.5, 128.3, 126.1, 56.1, 35.2, 29.9, 22.3. HRMS (FI) m/z
[M]+ calcd for C16H17

35ClO2S 308.0632, found 308.0629. IR (KBr)
(cm−1) 3033, 2408, 1220, 1546, 1444, 1318, 1220, 1150, 1088, 1013,
914, 781, 685, 674, 626, 557.

2,3-Dimethoxy-5-methyl-6-(10-(phenylsulfonyl)decyl)cyclohexa-
2,5-diene-1,4-dione (3s). The crude product was purified by column
chromatography on silica gel (PE:EA = 3:1) to afford 2,3-dimethoxy-
5-methyl-6-(10-(phenylsulfonyl)decyl)cyclohexa-2,5-diene-1,4-dione
(3s) (129 mg, 56% yield) as a yellow oil. 1H NMR (400 MHz,
CDCl3) δ 7.97−7.83 (m, 2H), 7.70−7.60 (m, 1H), 7.56 (t, J = 7.7
Hz, 2H), 4.11−3.86 (m, 6H), 3.18−2.97 (m, 2H), 2.41 (t, J = 7.4 Hz,
2H), 1.98 (s, 3H), 1.75−1.61 (m, 2H), 1.44−1.08 (m, 14H). 13C{1H}
NMR (101 MHz, CDCl3) δ 184.7, 184.1, 144.3, 144.3, 143.0, 139.3,
138.7, 133.6, 129.3, 128.0, 61.1, 56.3, 29.7, 29.3, 29.2, 29.2, 28.9, 28.7,
28.2, 26.4, 22.6, 11.9. HRMS (ESI) m/z [M + H]+ calcd for
C25H35O6S 463.2149, found 463.2151. IR (KBr) (cm−1) 2928, 2854,
1651, 1610, 1447, 1266, 1220, 1148, 784, 688, 673.

Chloro-4-(undec-10-en-1-ylsulfonyl)benzene (3t). The crude
product was purified by column chromatography on silica gel
(PE:EA = 15:1) to afford 1-chloro-4-(undec-10-en-1-ylsulfonyl)-
benzene (3t) (88 mg, 53% yield) as a yellow solid. mp 36.5−37.3 °C.
1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.4 Hz, 2H), 7.53 (d, J =
8.4 Hz, 2H), 5.89−5.67 (m, 1H), 5.08−4.80 (m, 2H), 3.16−2.97 (m,
2H), 2.08−1.94 (m, 2H), 1.76−1.60 (m, 2H), 1.43−1.28 (m, 5H),
1.22 (s, 7H). 13C{1H} NMR (101 MHz, CDCl3) δ 140.4, 139.1,
137.7, 129.6, 114.2, 56.4, 33.8, 29.3, 29.1, 29.0, 29.0 28.9, 28.2, 22.7.
HRMS (FI) m/z [M]+ calcd for C17H25

35ClO2S 328.1258, found
328.1263. IR (KBr) (cm−1) 3074, 2926, 2854, 1640, 1583, 1476,
1466, 1394, 1320, 1277, 1151, 1089, 1014, 994, 910, 830, 789, 759,
760, 628, 573.
Gram-Scale Reaction. Into a solution of alcohol 1a (5 mmol,

0.921 g, 1.0 equiv) and Ph3P (7 mmol, 1.836 g, 1.4 equiv) in DMF
(30 mL) in a 100 mL sealed tube was added ICH2CH2I (7 mmol,
1.973 g, 1.4 equiv) under a N2 atmosphere. After the reagents were
completely dissolved, CF3SO2Na (15 mmol, 2.371 g, 3.0 equiv) was
added. The tube was sealed and the resulting mixture was stirred at 80
°C for 15 min. The reaction mixture was cooled to room temperature.
Dichloromethane was added and the resulting solution was washed
with water. The organic layer was removed by concentration under
reduced pressure and the residue was subjected to flash column
chromatography to give the desired product (65%, 0.98 g).
Trifluoromethylsulfonylation in the Presence of TEMPO.

Into a solution of alcohol 1a (0.5 mmol, 92.1 mg, 1.0 equiv), Ph3P
(0.7 mmol, 183.6 mg, 1.4 equiv), and TEMPO (0.5 mmol, 78.1 mg,
1.0 equiv) in DMF (3 mL) in a 25 mL sealed tube was added
ICH2CH2I (0.7 mmol, 197.3 mg, 1.4 equiv) under a N2 atmosphere.
After the reagents were completely dissolved, CF3SO2Na (1.5 mmol,
237.1 mg, 3.0 equiv) was added. The tube was sealed and the
resulting mixture was stirred at 80 °C for 15 min. The reaction
mixture was cooled to room temperature. Dichloromethane was
added and the resulting solution was washed with water. The organic
layer was removed by concentration under reduced pressure and the
residue was subjected to flash column chromatography to give the
desired product (74%, 111.2 mg).
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Procedure for Sulfonylation of Alcohols with the Use of
(EtO)3P. Into a solution of alcohol 1a (0.5 mmol, 91.2 mg, 1.0 equiv)
and (EtO)3P (0.7 mmol, 116.3 mg, 1.4 equiv) in DMF (3 mL) in a 25
mL sealed tube was added ICH2CH2I (0.7 mmol, 197.3 mg, 1.4
equiv) under a N2 atmosphere. After the reagents were stirred at 120
°C for 30 min, CF3SO2Na (1.5 mmol, 237.1 mg, 3.0 equiv) was added
under a N2 atmosphere. The tube was sealed and the resulting mixture
was stirred at 120 °C for 60 min. The reaction mixture was cooled to
room temperature. Dichloromethane was added and the resulting
solution was washed with water. The organic layer was removed by
concentration under reduced pressure and the residue was subjected
to flash column chromatography to give the desired product (60%,
89.8 mg).
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