

HCF₂Se/HCF₂S Installation by Tandem Substitutions from Alkyl Bromides

Min Zhang, Jin-Hong Lin, and Ji-Chang Xiao*

Cite This: J. Or	g. Chem. 2021, 86, 13153–1315	59	Read	Online			
ACCESS	III Metrics & More		Article Recommen	ndations		s Supporting Ir	nformation
ABSTRACT: Herein we describe an efficient construction of HCF_2Se and HCF_2S groups by tandem substitutions between alkyl bromides and a reagent system consisting of MSeCN (or MSCN) and $Ph_3P^+CF_2H$ Br ⁻ . The tandem process occurs via the first nucleophilic substitution of alkyl bromides by			RBr/Cl + M = K or Na <mark>X = Se</mark> or S	MXCN	+ Ph ₃ P ⁺ CF ₂ H Br	Base RXCF₂H	

 \mathbf{F} luorine-containing compounds play a significant role in pharmaceutical chemistry, agrochemical chemistry and material sciences, as the introduction of fluorinated groups into organic molecules can significantly improve their physical, chemical and biological properties. Among various fluorinated groups, difluoromethylchalcogen groups including difluoromethylseleno (HCF₂Se) and difluoromethylthio (HCF₂S) are of great interest because they can act as a mild hydrogen donor and show intermediate lipophilicity and a strong electronwithdrawing nature.¹ In recent years, numerous biologically active molecules containing difluoromethylthio units have appeared, such as Flomoxef, which is an oxacephem antibiotic.² Therefore, developing efficient methods for the incorporation of HCF₂Se or HCF₂S into organic molecules is of continuous interest.

-SeCN (or -SCN) and the subsequent nucleophilic difluoromethylation.

Two strategies for HCF₂Se and HCF₂S installation have been well established, difluoromethylation of selenium³ or sulfur-containing⁴ compounds and direct difluoromethylselenolation⁵ or difluoromethylthiolation.⁶ Direct difluoromethylselenolation is highly efficient, but only two reagents have been developed, HCF₂SeCl and TsSeCF₂H (Scheme 1, eq a). Billard reported that HCF₂SeCl could be generated in situ from BnSeCF₂H by oxidative chlorination, and HCF₂SeCl was used to achieve electrophilic difluoromethylselenolation of various substrates, such as arenes,^{5a} carbonyls,^{5b} alkenes^{5c} and alkynes.^{5d,e} Additionally, Zhao developed a shelf-stable difluoromethylselenolation reagent, TsSeCF₂H, allowing for difluoromethylselenolation of aryl amines,^{5f} aryl boronic acid^{5g} and aldehydes.^{5h} Apparently, the HCF₂Se installation methods are attractive, but the synthesis of the reagents requires tedious procedures and only a low yield was obtained for the preparation of a precursor, BnSeCF₂H (19%). For HCF₂S installation, outstanding accomplishments have been achieved,^{4,6} and many difluoromethylthiolation reagents⁷ have been developed (Scheme 1, eq b). In 2015, Goossen developed an elegant two-step procedure for the installation of a HCF₂S group (Scheme 1, eq c).^{4a} Organothiocyanates (RSCN) were prepared first, and the subsequent difluoromethylation of

Scheme 1. Installation of HCF₂Se and HCF₂S Groups

a) Synthesis of Difluoromethylselenolation reagent

$\begin{array}{c c} \text{BnBr} & \underline{1} \\ \text{XSeCN} \\ \text{Z} \\ \text{ZSF} \end{array} \begin{array}{c} \text{BnSeCF}_2 H \\ \text{SSF} \end{array} \begin{array}{c} \text{SO}_2 CI_2 \\ \text{CISeCF}_2 H \end{array} \begin{array}{c} \text{TsNa} \\ \text{TsSeCF}_2 H \end{array} \begin{array}{c} \text{TsSeCF}_2 H \\ \text{TsSeCF}_2 H \end{array}$								
b) Difluoromethylthiolation reagent								
O PhSO ₂ SCF ₂ H HCF ₂ SO ₂ Na								
N-SCF ₂ H PhSO ₂ CF ₂ SNHPh HCF ₂ SO ₂ Cl								
O LAgSCF ₂ H HCF ₂ SOCI								
c) Difluoromethylation of Organothiocyanates								
$R-X \xrightarrow{NaSCN} R-SCN \xrightarrow{TMSCF_2H} R-SCF_2H$								
$X = Br/OMs/N_2^+ BF_4^-$								
d) This work								
KSeCN RBr/CI + or + Ph₃P ⁺ CF₂H Br ⁻ Base RSeCF₂H or NaSCN RSCF₂H								

RSCN with TMSCF₂H promoted by a stoichiometric copper complex led to the final construction of the HCF_2S group.

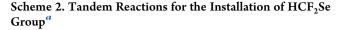
We recently disclosed that electrophilic phosphonium salts can act as nucleophilic reagents in the presence of Cs_2CO_3 .⁸ Phosphonium salts have found widespread applications in organic synthesis,⁹ and we found that difluoromethyl phosphonium salt $[Ph_3P^+CF_2H Br^-]$ could be considered as a $[HCF_2^{--}]$ equivalent, and thus this salt was used as a nucleophilic difluoromethylation reagent.^{8a} Herein we describe the use of this reagent in the installation of HCF_2Se and

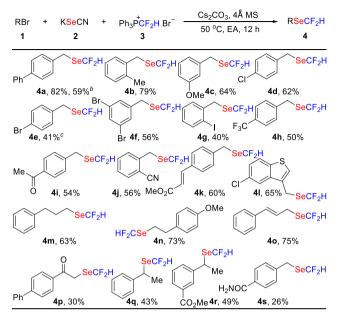
Received: July 20, 2021 Published: September 3, 2021

The Journal of Organic Chemistry

HCF₂S groups by tandem substitutions from alkyl bromides (Scheme 1, eq d). Stirring the mixture of alkyl bromides with [Ph₃P⁺CF₂H Br⁻]/KSeCN (or NaSCN) in the presence of Cs₂CO₃ smoothly provided the desired HCF₂Se-products (or HCF₂S-products). Moderate to good yields were obtained under mild conditions without the use of any transition metal for HCF₂Se installation, and the use of a catalytic amount of Ag₂CO₃ could give the HCF₂S-products in good yields.

Our initial attempt at the tandem reaction between substrate 1a with $KSeCN/[Ph_3P^+CF_2H Br^-]$ did occur in the presence of Cs_2CO_3 in spite of a low yield (Table 1, entry 1). Other

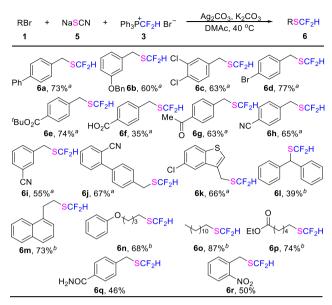

Table 1. Optimization of Reaction Conditions^a


Ph		+ Ph ₃ PCF ₂ H Br	Base	SeCF ₂ H
1	a 2	3		4a
Entry	Base	Temp (°C)	Solvent (mL)	Yield (%) ^b
1	Cs ₂ CO ₃	40	DMAc (2)	34
2	K ₂ CO ₃	40	DMAc (2)	33
3	Na ₂ CO ₃	40	DMAc (2)	29
4	CsHCO ₃	40	DMAc (2)	27
5	CsF	40	DMAc (2)	10
6	Cs_2CO_3	40	EA (2)	52
7	Cs_2CO_3	40	DME (2)	50
8	Cs ₂ CO ₃	40	MeCN (2)	29
9	Cs ₂ CO ₃	40	DCM (2)	31
10	Cs_2CO_3	30	EA (2)	45
11	Cs_2CO_3	50	EA (2)	58
12	Cs_2CO_3	60	EA (2)	23
13	Cs_2CO_3	50	EA (3)	44
14	Cs ₂ CO ₃	50	EA (1)	59
15 ^c	Cs ₂ CO ₃	50	EA (1)	83

^{*a*}Reaction conditions: Substrate 1a (0.2 mmol), 2 (0.24 mmol), 3 (0.6 mmol), and base (0.4 mmol) in solvent were heated for 12 h. ^{*b*}The yields were determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. ^{*c*}50 mg 4 Å MS were added.

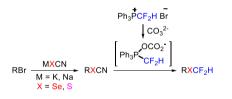
inorganic bases were also effective, but Cs_2CO_3 was found to be a superior choice (entries 1–5). Various reaction solvents were briefly surveyed (entries 6–9), and ethyl acetate (EA) seemed to be a suitable solvent (entry 6). The reaction temperature also played an important role (entries 10–12), and a moderate yield was obtained at 50 °C (entry 11). The yield was significantly increased by increasing the concentration and adding 4 Å MS (entry 15).

With the optimal reaction conditions in hand (Table 1, entry 15), we then investigated the substrate scope of the tandem reaction for the HCF₂Se installation. As shown in Scheme 2, the tandem process could be extended to a wide range of alkyl bromides, such as benzyl-, allyl-, and inert alkyl-bromides, α carbonyl methyl-bromides, and secondary bromides. All reactions proceeded smoothly simply by stirring the mixture of RBr with [Ph₃P⁺CF₂H Br⁻]/KSeCN in the presence of Cs₂CO₃. The substitutions including halide, trifluoromethyl, carbonyl, cyano, and ester on the phenyl ring in benzyl bromides were all tolerated, and the reaction delivered the target products in moderate to excellent yields (4a-4l). Benzyl chlorides were less reactive (4e). Inert alkyl bromides showed high reactivity, and good yields were obtained (4m-4n). In the case of secondary bromides, the strong steric effects led to lower yields (4q-4r).

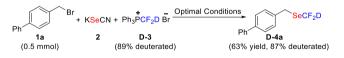

^{*a*}Reaction conditions: substrate 1 (0.5 mmol), 2 (1.2 equiv), 3 (3.0 equiv), Cs_2CO_3 (2.0 equiv) and 4 Å molecular sieve (125 mg) in EA (2.5 mL) at 50 °C under a N_2 atmosphere for 12 h. ^{*b*}A 59% yield was obtained for a 1 mmol-scale reaction (1 mmol of 1a). ^{*c*}Benzyl chloride was used instead of benzyl bromide.

The successful HCF₂Se incorporation prompted us to extend the tandem process to the installation of a HCF₂S group (Scheme 3). The use of NaSCN instead of KSeCN under similar conditions can only afford the desired HCF₂Sproduct (6a) in a 27% yield. To our delight, the yield was increased to 83% in DMAc by adding [Ph₃P⁺CF₂H Br⁻] dropwise and using Ag_2CO_3 (0.2 equiv) as an additive. (For reaction conditions screened, please see the Supporting Information.) Under the optimal conditions, a variety of benzyl bromides could be well converted to give the expected products (6a-6k). Secondary bromides also exhibited low reactivity (61). For the conversions of inert alkyl bromides. good yields still could be obtained by first stirring the RBr/ NaSCN mixture and then adding [Ph₃P⁺CF₂H Br⁻] dropwise (6m-6q). Various functional groups could be tolerated, such as ether, chloro, bromo, ester, carboxyl, keto, nitro and cyano groups, demonstrating good synthetic utility of this approach.

Based on the above results and our previous studies on nucleophilic reactions with phosphonium salts,⁸ we propose that the reactions may proceed via a tandem process, including the first nucleophilic substitution of alkyl bromides RBr with KSeCN (or NaSCN) to give RXCN (X = Se or S) and the subsequent nucleophilic difluoromethylation of RXCN with phosphonium salt [Ph₃P⁺CF₂H Br⁻] initiated by Cs₂CO₃ to afford the final products (Scheme 4). Indeed, the use of the deuterated salt, [Ph₃P⁺CF₂D Br⁻], delivered the corresponding product (Scheme 5), suggesting that the CF₂H group is directly transferred without the cleavage of the CF₂-H bond.


In summary, we have developed an efficient protocol for the installation of HCF₂Se and HCF₂S groups by a tandem substitution process. The reactions between alkyl bromides RBr and $[Ph_3P^+CF_2H\ Br^-]/KSeCN$ (or NaSCN) occurred smoothly to provide the expected products in moderate to

Scheme 3. Installation of HCF₂S Group^a



^{*a*}Reaction conditions of Method a for benzyl bromides: The solution of **3** (1.5 mmol) in 5 mL DMAc was added dropwise via a syringe for 1.25 h at 40 °C into the mixture of substrate **1** (0.5 mmol), 5 (0.6 mmol), K₂CO₃ (1.0 mmol), and Ag₂CO₃ (0.1 mmol) in DMAc (0.2 mL). ^{*b*}Reaction conditions of Method b for secondary bromides and alkyl bromides: Substrate **1** (0.5 mmol), **5** (0.6 mmol), K₂CO₃ (1.0 mmol), and Ag₂CO₃ (0.1 mmol) in DMAc (0.2 mL) at 60 °C heat for 2 h. The solution of **3** (1.5 mmol) in 5 mL DMAc was added dropwise via a syringe for 1.25 h.

Scheme 4. Proposed Mechanism

Scheme 5. Evidence for Direct Difluoromethylation

good yields. Convenient operations and mild reaction conditions may make this installation protocol attractive.

EXPERIMENTAL SECTION

General Experimental Methods. ¹H, ¹³C and ¹⁹F NMR spectra were detected on a 500 MHz or 400 MHz NMR spectrometer. Data for ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (s) in Hz). Mass spectra were obtained on GC-MSorLC-MS (ESI). High resolution mass data were recorded on a high resolution mass spectrometer in the EI, ESI or DART mode. The mass analyzer types for HRMS-EI, HRMS-ESI and HRMS-DART are time-of-flight, Fourier transform mass spectrometer and Fourier transform ion cyclotron resonance, respectively. Infrared spectroscopy was performed on a Thermo Scientific Nicolet iS5. Melting points were measured by DSC Q2000. The reactions are all carried out in dry solvents. Unless otherwise noted, the **1**, **2**, **5** series of compounds were obtained commercially and used without further purification. Compounds 1s and 3 were synthesized according to literature methods.^{10,8a}

4-(Bromomethyl)benzamide (1s). ¹H NMR (400 MHz, CD₃OD) δ 7.83 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 4.58 (s, 2H). HRMS (ESI) m/z: [M + H]⁺ calcd for C₈H₉BrNO 213.9862; found 213.9863.

(Difluoromethyl)triphenylphosphonium Bromide (**3**). ¹H NMR (400 MHz, CD₃OD) δ 8.25 (td, *J* = 47.2, 29.9 Hz, 1H), 8.13–8.05 (m, 3H), 8.00–7.87 (m, 12H). ¹⁹F NMR (376 MHz, CD₃OD) δ –127.12 (dd, *J* = 77.7, 47.2 Hz, 2F). ³¹P NMR (162 MHz, CD₃OD) δ 19.20 (t, *J* = 77.8 Hz, 1P).

(Ddifluoromethyl)triphenylphosphonium Bromide (D-3). ¹H NMR (400 MHz, CD₃CN) δ 8.04–7.96 (m, 3H), 7.96–7.87 (m, 6H), 7.80 (m, 6H). ¹⁹F NMR (376 MHz, CD₃CN) δ –128.06 (dt, *J* = 78.2, 7.1 Hz, 2F). ³¹P NMR (162 MHz, CD₃CN) δ 19.17 (tt, *J* = 78.0, 4.3 Hz, 1P).

General Procedures for the HCF₂Se Installation. Into a 15 mL Schlenk tube were added $Ph_3P^+CF_2H$ Br⁻ (589.8 mg, 1.5 mmol, 3.0 equiv), KSeCN (86.4 mg, 0.6 mmol, 1.2 equiv), Cs₂CO₃ (325.8 mg, 1.0 mmol, 2.0 equiv), 4 Å molecular sieve (125 mg) and EA (2.5 mL) under a N₂ atmosphere. Then alkyl bromides (0.5 mmol, 1.0 equiv) or alkyl chloride (1e) was added. The resulting mixture was stirred at 50 °C (oil bath) for 12 h under a N₂ atmosphere. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, the crude reaction mixture was diluted with EA (20 mL). The solution was washed with water (20 mL) and brine (20 mL), and then dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to flash column chromatography to give the final product 4.

([1,1'-Biphenyl]-4-ylmethyl)(difluoromethyl)selane (4a). Eluent: petroleum ether/ethyl acetate (100:1). For the 1-mmol-scale reaction, all loadings of each reagent and the reaction solvent were doubled. Stirring the mixture for 12 h gave a 59% yield (175.4 mg). Yellow oil, 121.4 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 13.9, 2H), 7.60 (d, *J* = 13.9, 2H), 7.52–7.36 (m, SH), 7.14 (t, *J* = 55.1 Hz, 1H), 4.18 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -92.74 (d, *J* = 55.1 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.6 (s), 140.4 (s), 136.5 (s), 129.5 (s), 128.9 (s), 127.6 (s), 127.5 (s), 127.1 (s), 115.8 (t, *J* = 287.1 Hz), 26.1 (t, *J* = 2.7 Hz). IR (KBr): 3029, 2965, 1488, 1294, 1278, 1058, 845, 765, 696 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₄H₁₂F₂⁷⁴Se 292.0127; found 292.0130.

(*Difluoromethyl*)(2-methylbenzyl)selane (4b). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 93.1 mg, 79% yield. ¹H NMR(400 MHz, CDCl₃)) δ 7.26 (d, J = 6.7 Hz, 1H), 7.22–7.13 (m, 3H), 7.09 (t, J = 55.1 Hz, 1H), 4.13 (s, 2H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.81 (d, J = 55.1 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.7 (s), 134.9 (s), 130.9 (s), 129.8 (s), 127.9 (s), 126.4 (s), 115.8 (t, J = 286.8 Hz), 24.4 (t, J = 2.8 Hz), 19.2 (s). IR (KBr): 3019, 2971, 1294, 1277, 1057, 763 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₉H₁₀F₂⁻⁷⁴Se 229.9970; found 229.9978.

(*Difluoromethyl*)(3-methoxybenzyl)selane (4c). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 80.5 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 6.0 Hz, 1H), 7.14 (t, *J* = 55.1 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 4.06 (s, 2H), 3.80 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -92.97 (d, *J* = 55.2 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.9 (s), 138.9 (s), 129.9 (s), 121.3 (s), 115.7 (t, *J* = 286.8 Hz), 114.6 (s), 113.0 (s), 55.3 (s), 26.3 (t, *J* = 2.9 Hz). IR (KBr): 2960, 2836, 1600, 1488, 1265, 1042, 695 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₉H₁₀F₂O⁷⁴Se 245.9919; found 245.9935.

(4-Chlorobenzyl)(difluoromethyl)selane (4d). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 79.2 mg, 62% yield. ¹H NMR(400 MHz, CDCl₃) δ 7.30–7.23 (m, 4H), 7.07 (t, *J* = 55.0 Hz, 1H), 4.05 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.72 (d, *J* = 55.0 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.1 (s), 133.3 (s), 130.4 (s), 129.1 (s), 115.5 (t, *J* = 287.4 Hz), 25.5 (t, *J* = 3.0 Hz). IR (KBr): 2966, 1596, 1491, 1094, 832 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₈H₇³⁵ClF₂⁷⁴Se 249.9424; found 249.9424.

(4-Bromobenzyl)/difluoromethyl)selane (4e). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 62.2 mg, 41% yield. ¹H NMR

(400 MHz, CDCl₃) δ 7.44 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 7.1 Hz, 2H), 7.08 (t, J = 55.0 Hz, 1H), 4.05 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃)) δ –92.70 (d, J = 55.0 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.6 (s), 132.0 (s), 130.7 (s), 121.3 (s), 115.5 (t, J = 287.6 Hz), 25.5 (t, J = 2.9 Hz). IR (KBr): 2966, 1590, 1487, 1294, 1277, 1068, 1011, 828 cm⁻¹. HRMS (EI) m/z: [M]⁺ calcd for C₈H₇⁷⁹BrF₂⁷⁴Se 293.8919; found 293.8918.

(3,5 Dibromobenzyl)(difluoromethyl)selane (4f). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 106.6 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 1.6 Hz, 1H), 7.45 (d, J = 1.7 Hz, 2H), 7.15 (t, J = 54.7 Hz, 1H), 4.02 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.30 (d, J = 54.8 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 141.6 (s), 133.1 (s), 130.8 (s), 123.1 (s), 115.1 (t, J = 288.4 Hz), 24.5 (t, J = 3.1 Hz). IR (KBr): 2863, 1583, 1554, 1058, 857, 742, 680 cm⁻¹. HRMS (EI) m/z: [M]⁺ calcd for C₈H₆⁷⁹Br₂F₂⁷⁴Se 371.8029; found 371.8028.

(*Difluoromethyl*)(2-*iodobenzyl*)*selane* (*4g*). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 69.5 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 54.1 Hz, 1H), 6.94 (t, *J* = 7.3 Hz, 1H), 4.19 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -92.39 (d, *J* = 55.0 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.8 (s), 140.0 (s), 130.0 (s), 129.2 (s), 128.8 (s), 115.6 (t, *J* = 287.6 Hz), 100.7 (s), 32.0 (t, *J* = 2.9 Hz). IR (KBr): 2917, 2849, 1469, 1293, 1275, 1057, 755 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₈H₇F₂I⁷⁴Se 341.8780; found 341.8779.

(Difluoromethyl)(4-(trifluoromethyl)benzyl)selane (**4**h). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 72.9 mg, 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.11 (t, *J* = 54.9 Hz, 1H), 4.13 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃ δ -62.63 (s, 3F), -92.63 (d, *J* = 54.8 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 141.9 (s), 129.7 (q, *J* = 32.5 Hz), 129.4 (s), 125.9 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 272.0 Hz), 115.3 (t, *J* = 287.8 Hz), 25.4 (t, *J* = 3.1 Hz). IR (KBr): 2966, 1618, 1417, 1326, 1066, 849 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₉H₇F₅⁷⁴Se 283.9688; found 283.9695.

1-(4-(((Difluoromethyl)selanyl)methyl)phenyl)ethanone (4i). Eluent: petroleum ether/ethyl acetate (10:1). Yellow oil, 70.7 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.09 (t, *J* = 54.9 Hz, 1H), 4.11 (s, 2H), 2.57 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃)) δ -92.57 (d, *J* = 54.9 Hz, 2F). ¹³C{¹H} NMR(101 MHz, CDCl₃) δ 197.5 (s), 143.2 (s), 136.2 (s), 129.2 (s), 128.9 (s), 115.4 (t, *J* = 287.7 Hz), 26.6 (s), 25.6 (t, *J* = 3.0 Hz). IR (KBr): 1682, 1605, 1268, 1058, 848 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₀H₁₀F₂O⁷⁴Se 257.9919; found 257.9931.

2-(((Difluoromethyl)selanyl)methyl)benzonitrile (**4***j*). Eluent: petroleum ether/ethyl acetate (10:1). Yellow oil, 68.8 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.7 Hz, 1H), 7.53 (td, *J* = 7.7, 1.2 Hz, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.35 (td, *J* = 7.6, 0.9 Hz, 1H), 7.18 (t, *J* = 54.8 Hz, 1H), 4.24 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -92.12 (d, *J* = 54.8 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.3 (s), 133.3 (s), 133.2 (s), 130.2 (s), 128.0 (s), 117.3 (s), 115.4 (t, *J* = 288.3 Hz), 112.4 (s), 23.7 (t, *J* = 3.2 Hz). IR (KBr): 2926, 2853, 2226, 1487, 1293, 1057, 766 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₉H₇F₂N⁷⁴Se 240.9766; found 240.9775.

(E)-Methyl 3-(4-(((difluoromethyl)selanyl)methyl)phenyl)acrylate (4k). Eluent: petroleum ether/ethyl acetate (10:1). Yellow oil, 92.1 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 55.0 Hz, 1H), 6.41 (d, *J* = 16.0 Hz, 1H), 4.08 (s, 2H), 3.79 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -92.65 (d, *J* = 55.0 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.3 (s), 144.1 (s), 134.0 (s), 133.5 (s), 129.5 (s), 128.5 (s), 118.0 (s), 115.5 (t, *J* = 287.4 Hz), 51.7 (s), 25.8 (t, *J* = 3.0 Hz). IR (KBr): 2951, 2842, 1716, 1638, 1436, 1327, 1171, 1059, 982, 830 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₂H₁₂F₂O₂⁻⁷⁴Se 300.0025; found 300.0040.

5-Chloro-3-(((difluoromethyl)selanyl)methyl)benzo[b]thiophene (**4**). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 101.9 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.75 (d, *J* = 8.6 Hz, 1H), 7.40 (s, 1H), 7.33 (d, *J* = 8.6 Hz, 1H), 7.10 (d, *J* = 55.2

Note

Hz, 1H), 4.27 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –93.17 (d, *J* = 54.7 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.81 (s), 138.80 (s), 130.9 (s), 130.7 (s), 126.8 (s), 125.3 (s), 124.1 (s), 121.7 (s), 115.6 (t, *J* = 287.5 Hz), 18.3 (t, *J* = 3.4 Hz). IR (KBr): 3094, 2926, 1421, 1292,1078, 1056, 834, 775 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₀H₇³⁵ClF₃S⁷⁴Se 305.9145; found 305.9155.

(Difluoromethyl)(3-phenylpropyl)selane (4m).^{3e} Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 78.9 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.29 (m, 2H), 7.25–7.18 (m, 3H), 7.17 (t, *J* = 55.0 Hz, 1H), 2.89 (t, *J* = 7.4 Hz, 2H), 2.76 (t, *J* = 7.5 Hz, 2H), 2.17–2.06 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –91.21 (d, *J* = 55.1 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.9 (s), 128.6 (s), 126.2 (s), 115.5 (t, *J* = 286.6 Hz), 35.7 (s), 32.4 (s), 22.3 (t, *J* = 2.5 Hz). IR (KBr): 3027, 2937, 2855, 1603, 1496, 1279, 1060, 745, 699 cm⁻¹.HRMS (EI) *m*/*z*: [M]⁺calcd for C₁₀H₁₂F₂⁻⁷⁴Se 244.0127; found 244.0127.

(Difluoromethyl)(4-methoxyphenethyl)selane (4n). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 96.4 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.4 Hz, 2H), 7.09 (t, J = 55.2 Hz, 1H), 6.88 (d, J = 8.4 Hz, 2H), 3.81 (s, 3H), 3.07 (t, J = 6.2 Hz, 2H), 3.05 (t, J = 6.1 Hz, 2H). ¹⁹F NMR(376 MHz, CDCl₃) δ -91.47 (d, J = 55.2 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.5 (s), 132.5 (s), 129.5 (s), 115.4 (t, J = 286.7 Hz), 114.1 (s), 55.3 (s), 36.5 (s), 24.3 (t, J = 2.3 Hz). IR (KBr): 3000, 2937, 2836, 1611, 1512, 1058, 1034, 819 cm⁻¹.HRMS (EI) m/z: [M]⁺ calcd for C₁₀H₁₂F₂O⁷⁴Se 260.0076; found 260.0088.

Cinnamyl(difluoromethyl)selane (40). Eluent: petroleum ether/ ethyl acetate (100:1). Yellow oil, 93.2 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.31 (m, 4H), 7.28 (d, *J* = 5.3 Hz, 1H), 7.14 (t, *J* = 55.2 Hz, 1H), 6.53 (d, *J* = 15.7 Hz, 1H), 6.36 (dt, *J* = 15.6, 7.7 Hz, 1H), 3.70 (d, *J* = 7.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.90 (d, *J* = 55.2 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.3 (s), 133.0 (s), 128.7 (s), 128.0 (s), 126.5 (s), 125.1 (s), 116.0 (t, *J* = 286.5 Hz), 25.4 (t, *J* = 2.7 Hz). IR (KBr): 3028, 2965, 1496, 1295, 1063, 963, 748, 692 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₀H₁₀F₂⁻⁷⁴Se 241.9970; found 241.9977.

1-([1,1'-Biphenyl]-4-yl)-2-((difluoromethyl)selanyl)ethanone (**4p**). Eluent: petroleum ether/ethyl acetate (10:1). White solid, mp 88.6 °C. 48.4 mg, 30% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 6.7 Hz, 2H), 7.48–7.36 (m, 3H), 7.30 (t, *J* = 55.6 Hz, 1H), 4.29 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.43 (d, *J* = 54.9 Hz). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.2 (s), 146.7 (s), 139.7 (s), 133.7 (s), 129.4 (s), 129.2 (s), 128.6 (s), 127.6 (s), 127.4 (s), 115.3 (t, *J* = 287.9 Hz), 27.8 (t, *J* = 2.2 Hz). HRMS (EI) *m*/*z*: [M]⁺ calcd for C₁₅H₁₂F₂O⁷⁴Se 320.0076; found 320.0085.

(*Difluoromethyl*)(1-phenylethyl)selane (**4q**). Eluent: petroleum ether/ethyl acetate (100:1). Yellow oil, 50.2 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.30 (m, 4H), 7.29–7.22 (m, 1H), 6.90 (t, *J* = 55.3 Hz, 1H), 4.63 (q, *J* = 7.0 Hz, 1H), 1.85 (d, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.92 (ddd, *J* = 306.8, 252.4, 55.3 Hz, 2F). ¹³C {¹H}NMR (101 MHz, CDCl₃) δ 142.6 (s), 128.9 (s), 127.7 (s), 127.3 (s), 116.8 (t, *J* = 286.2 Hz), 39.0 (s), 23.3 (s). IR (KBr): 2970, 2925, 2870, 1379, 1065, 764, 697 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₉H₁₀F₂⁻⁷⁴Se 229.9970; found 229.9972.

Methyl 3-(1-((*Difluoromethyl*)*selanyl*)*ethyl*)*benzoate* (4r). Eluent: petroleum ether/ethyl acetate (10:1). Yellow oil, 72.5 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.41 (dd, *J* = 7.7 Hz, 7.6 Hz, 1H), 6.94 (t, *J* = 55.1 Hz, 1H), 4.67 (q, *J* = 7.1 Hz, 1H), 3.92 (s, 3H), 1.86 (d, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.66 (qd, *J* = 251.5, 55.1 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.7 (s), 143.3 (s), 131.8 (s), 130.8 (s), 129.0 (s), 128.8 (s), 128.2 (s), 116.4 (dd, *J* = 287.9, 285.7 Hz), 52.3 (s), 38.2 (t, *J* = 2.1 Hz), 23.1 (s). IR (KBr): 2954, 2926, 2871, 1724, 1289, 1056, 757, 697 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₁H₁₂F₂O₂⁷⁴Se 288.0025; found 288.0021.

4-(((Difluoromethyl)selanyl)methyl)benzamide (4s). Eluent: dichloromethane/methanol (50:1). White solid, mp 127.6 °C. 34.7 mg, 26% yield. ¹H NMR (400 MHz, CD₃CN) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.33 (t, *J* = 54.8 Hz, 1H), 6.76 (br, 1H), 6.05 (br, 1H), 4.18 (s, 2H). ¹⁹F NMR (376 MHz, CD₃CN) δ –93.33 (d, J = 54.7 Hz, 2F). ¹³C{¹H} NMR (126 MHz, CD₃CN) δ 168.2, 142.5, 132.8, 128.9, 127.9, 116.9 (t, J = 284.1 Hz), 25.2 (t, J = 3.0 Hz). IR (KBr): 3379, 3183, 1645, 1621, 1568, 1418, 1017, 619 cm⁻¹. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₉H₁₀F₂NO⁷⁴Se 259.9950; found 259.9948.

General Procedures for the HCF₂S Installation. Method A: Into a 15 mL Schlenk tube were added benzyl bromides (0.5 mmol, 1.0 equiv), NaSCN (48.6 mg, 0.6 mmol, 1.2 equiv), K₂CO₃ (138.2 mg, 1.0 mmol, 2.0 equiv), Ag₂CO₃ (27.6 mg, 0.1 mmol, 0.2 equiv) and DMAc (0.2 mL) under a N2 atmosphere. Into this mixture under an argon atmosphere at 40 °C (oil bath), the solution of $Ph_3P^+CF_2H$ Br⁻ (589.8 mg, 1.5 mmol, 3.0 equiv) in DMAc (5 mL) was added dropwise via a syringe for 1.25 h. Upon the completion of addition, the resulting mixture was further stirred at the same temperature for 10 min. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, the crude reaction mixture was diluted with EA (20 mL). The solution was washed with water $(3 \times 20 \text{ mL})$ and brine (20 mL), then dried over anhydrous Na2SO4 and evaporated under reduced pressure. The residue was subjected to flash column chromatography to give the final product 6a-6k. Method B: Into a 15 mL Schlenk tube were added alkyl bromides (0.5 mmol, 1.0 equiv), NaSCN (48.6 mg, 0.6 mmol, 1.2 equiv), K₂CO₃ (138.2 mg, 1.0 mmol, 2.0 equiv), Ag₂CO₃ (27.6 mg, 0.1 mmol, 0.2 equiv) and DMAc (0.2 mL) under a N_2 atmosphere at 60 °C for 2 h. Then the solution of Ph₃P⁺CF₂H Br⁻ (589.8 mg, 1.5 mmol, 3.0 equiv) in DMAc (5 mL) was added dropwise via a syringe pump for 1.25 h at 60 °C (oil bath). Upon the completion of addition, the resulting mixture was further stirred at the same temperature for 10 min. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, the crude reaction mixture was diluted with EA (20 mL). The solution was washed with water $(3 \times 20 \text{ mL})$ and brine (20 mL), then dried over anhydrous Na2SO4 and evaporated under reduced pressure. The residue was subjected to flash column chromatography to give the final product 61-6p.

 $\bar{(}[1,1'-Biphenyl]$ -4-ylmethyl $\hat{)}$ (difluoromethyl)sulfane (**6a**).^{6d} Eluent: petroleum ether. White waxy solid, 91.3 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.56 (m, 4H), 7.52–7.41 (m, 4H), 7.37 (tt, *J* = 7.5, 1.8 Hz, 1H), 6.79 (t, *J* = 56.5 Hz, 1H), 4.08 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.3 (d, *J* = 56.5 Hz, 2F).

(3-(Benzyloxy)benzyl)(difluoromethyl)sulfane (**6b**). Eluent: petroleum ether/ethyl acetate (40:1). Yellow oil, 84.0 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.38 (m, 4H), 7.36 (d, *J* = 7.1 Hz, 1H), 7.26 (t, *J* = 7.9 Hz, 1H), 6.99 (m, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.91 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.72 (t, *J* = 56.6 Hz, 1H), 5.07 (s, 2H), 3.99 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.5 (d, *J* = 56.7 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.2 (s), 137.9 (s), 136.9 (s), 130.0 (s), 128.7 (s), 128.2 (s), 127.6 (s), 121.6 (s), 120.3 (t, *J* = 274 Hz), 115.5 (s), 114.2 (s), 70.1 (s), 31.9 (t, *J* = 3.6 Hz). IR (KBr): 3065, 3034, 1598, 1584, 1489, 1447, 1381, 1323, 1298, 1265, 1237, 1157, 1027, 774, 739, 712, 697 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₁₄F₂OS 280.0728; found 280.0732.

(3,4-Dichlorobenzyl)(difluoromethyl)sulfane (6c).¹¹ Eluent: petroleum ether. Yellow oil,76.5 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 2.1 Hz, 1H), 7.40 (d, *J* = 8.3 Hz, 1H), 7.19 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.76 (t, *J* = 56.0 Hz, 1H), 3.96 (s, 2H). ¹⁹F NMR(376 MHz, CDCl₃) δ -94.01 (d, *J* = 56.0 Hz, 2F).

(4-Bromobenzyl)/difluoromethyl)sulfane (6d).^{6d} Eluent: petroleum ether. Yellow oil, 97.8 mg, 77%. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.7 Hz, 2H), 7.25 (d, J = 7.7 Hz, 2H), 6.77 (t, J = 56.3 Hz, 1H), 3.99 (d, J = 4.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.15 (d, J = 56.3 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.6 (s), 132.0 (s), 130.7 (s), 121.7 (s), 120.1 (t, J = 273.4 Hz), 31.1 (t, J = 3.7 Hz). IR (KBr): 2965, 1488, 1323, 1071, 1012, 830, 773 cm⁻¹. HRMS (EI) m/z: [M]⁺ calcd for C₈H₇BrF₂S 251.9415; found 251.9425.

tert-Butyl 4-(((difluoromethyl)thio)methyl)benzoate (6e). Eluent: petroleum ether/ethyl acetate (40:1). Yellow oil, 101.4 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 6.73 (t, *J* = 56.3 Hz, 1H), 4.04 (s, 2H), 1.59 (s, 9H). ¹⁹F

Note

NMR(376 MHz, CDCl₃) δ -94.2 (d, J = 56.3 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.4 (s), 141.2 (s), 131.5 (s), 130.0 (s), 128.8 (s), 120.1 (t, J = 273.5 Hz), 81.2 (s), 31.5 (t, J = 3.7 Hz), 28.3 (s). IR (KBr): 2988, 2933, 1713, 1611, 1414, 1393, 1369, 1310, 1295, 1250, 1167, 1118, 1060, 1020, 850, 775, 763, 713 cm⁻¹. HRMS (EI) m/z: [M]⁺ calcd for C₁₃H₁₆F₂O₂S 274.0834; found 274.0837.

4-(((Difluoromethyl)thio)methyl)benzoic Acid (6f). Eluent: petroleum ether/ethyl acetate (5:1). White solid, 38.0 mg, 35% yield. Mp 141.8 °C. ¹H NMR (400 MHz, CD₃OD) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 6.97 (t, *J* = 56.3 Hz, 1H), 4.07 (s, 2H). ¹⁹F NMR(376 MHz, CD₃OD) δ -95.51 (d, *J* = 56.3 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CD₃OD) δ 169.5 (s), 144.0 (s), 131.11 (s), 131.08 (s), 130.0 (s), 122.4 (t, *J* = 271.0 Hz), 32.1 (t, *J* = 3.7 Hz). IR (KBr): 2946, 2671, 2553, 1683, 1611, 1577, 1427, 1322, 1289, 1183, 1127, 1046, 1009, 933, 867, 773, 760, 711, 682, 669, 546, 496, 443 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₉H₈F₂O₂S 218.0208; found 218.0217.

1-(4-(((Difluoromethyl)thio)methyl)phenyl)ethenone (**6***g*). Eluent: petroleum ether/ethyl acetate (20:1). Yellow oil, 68.4 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.2 Hz, 2H), 6.75 (t, *J* = 56.2 Hz, 1H), 4.05 (s, 2H), 2.58 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.06 (d, *J* = 56.1 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.6 (s), 142.1 (s), 136.5 (s), 129.2 (s), 128.9 (s), 120.1 (t, *J* = 273.6 Hz), 31.3 (t, *J* = 3.8 Hz), 26.7 (s). IR (KBr): 1683, 1606, 1413, 1360, 1324, 1305, 1267, 1183, 1061, 1019, 959, 777, 668, 595, 573 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₁₀H₁₀F₂OS 216.0415; found: 216.0423.

4-(((Difluoromethyl)thio)methyl)benzonitrile (**6**h).⁴⁹ Eluent: petroleum ether/ethyl acetate (20:1). Yellow oil, 64.8 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 6.77 (t, *J* = 55.9 Hz, 1H), 4.05 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.79 (d, *J* = 55.9 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.4 (s), 132.6 (s), 129.7 (s), 119.8 (t, *J* = 274.2 Hz), 118.6 (s), 111.6 (s), 31.1 (t, *J* = 3.9 Hz). IR (KBr): 2956, 2923, 2852, 2229, 1922, 1809, 1607, 1506, 1416, 1318, 1249, 1021, 737, 551 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺calcd for C₉H₇F₂NS 199.0262; found 199.0268.

3-(((Difluoromethyl)thio)methyl)benzonitrile (**6**i). Eluent: petroleum ether/ethyl acetate (40:1). Yellow oil, 54.5 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 6.78 (t, *J* = 55.9 Hz, 1H), 4.03 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.80 (d, *J* = 55.8 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.5 (s), 133.4 (s), 132.4 (s), 131.4 (s), 129.7 (s), 119.9 (t, *J* = 274.1 Hz), 118.5 (s), 113.0 (s), 30.7 (t, *J* = 3.9 Hz). IR (KBr): 3064, 2972, 2232, 1601, 1583, 1483, 1432, 1325, 1256, 1231, 1061, 1026, 919, 903, 863, 798, 775, 760, 706, 684, 669, 607, 540, 454, 436 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₉H₇F₂NS 199.0262; found 199.0270.

4'-(((Difluoromethyl))thio)methyl)-[1,1'-biphenyl]-2-carbonitrile (6j). Eluent: petroleum ether/ethyl acetate (20:1). Yellow solid, 92.9 mg, 67% yield. mp 55.3 °C. ¹H NMR (400 MHz, CDCl₃)δ 7.76 (d, J = 7.7 Hz, 1H), 7.65 (t, J = 8.3 Hz, 1H), 7.58–7.42(m, 6H), 6.80 (t, J = 56.5 Hz, 1H), 4.08 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.14 (d, J = 56.4 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.9 (s), 137.6 (s), 137.1 (s), 133.9 (s), 133.0 (s), 130.1 (s), 129.4 (s), 129.3 (s), 127.8 (s), 120.2 (t, J = 273.3 Hz), 118.8 (s), 111.3 (s), 31.4 (t, J = 3.7 Hz). IR (KBr): 3481, 2924, 2853, 2223, 1647, 1614, 1596, 1479, 1445, 1409, 1322, 1268, 1247, 1060, 1024, 888, 845, 764, 670 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₁₅H₁₁F₂NS 275.0575; found 275.0586.

5-Chloro-3-(((difluoromethyl)thio)methyl)benzo[b]thiophene (**6k**). Eluent: petroleum ether. Yellow oil, 87.5 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 1.9 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 1H), 7.44 (s, 1H), 7.35 (dd, *J* = 8.6, 1.9 Hz, 1H), 6.81 (t, *J* = 56.2 Hz, 1H), 4.23 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.55 (d, *J* = 56.2 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.82 (s), 138.78 (s), 130.9 (s), 129.8 (s), 127.2 (s), 125.3 (s), 124.0 (s), 121.6 (s), 120.3 (t, *J* = 273.6 Hz), 24.7 (t, *J* = 4.2 Hz). IR (KBr): 3502, 3096, 1587, 1556, 1423, 1304, 1321, 1253, 1241, 1149, 1078, 1060, 1026,

The Journal of Organic Chemistry

864, 835, 793, 772 cm⁻¹. HRMS (EI) m/z: [M]⁺ calcd for C₁₀H₇ClF₂S₂ 263.9641; found 263.9648.

Benzhydryl(difluoromethyl)sulfane (6l). Eluent: petroleum ether. Yellow oil, 49.0 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.3 Hz, 4H), 7.37 (dd, *J* = 7.7, 7.3 Hz, 4H), 7.30 (dd, *J* = 7.7, 7.3 Hz, 2H), 6.58 (t, *J* = 57.4 Hz, 1H), 5.61 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.38 (d, *J* = 57.4 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 139.9 (s), 129.0 (s), 128.3 (s), 127.9 (s), 120.8 (t, *J* = 272.8 Hz), 51.7 (t, *J* = 2.8 Hz). IR (KBr): 3063, 3029, 2065, 1600, 1494, 1450, 1320, 1302, 1070, 1031, 795, 749, 699, 669, 629, 586, 506 cm⁻¹. HRMS (EI) *m/z*: [M]⁺ calcd for C₁₄H₁₂F₂S 250.0623, Found 250.0629.

(*Difluoromethyl*)/2-(*naphthalen-1-yl*)*ethyl*)*sulfane* (*6m*). Eluent: petroleum ether. Yellow oil, 87.7 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.65–7.52 (m, 2H), 7.50–7.44 (m, 1H), 7.41 (d, *J* = 6.8 Hz, 1H), 6.88 (t, *J* = 56.2 Hz, 1H), 3.50 (dd, *J* = 9.2, 6.8 Hz, 2H), 3.22 (dd, *J* = 9.2, 6.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.38 (d, *J* = 56.3 Hz, 2F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.7 (s), 134.1(s), 131.6 (s), 129.1 (s), 127.7 (s), 126.8 (s), 126.4 (s), 125.8 (s), 125.6 (s), 123.3 (s), 120.8 (t, *J* = 273.1 Hz), 34.4 (s), 27.9 (t, *J* = 2.9 Hz). IR (KBr): 3527, 3064, 2941, 1597, 1510, 1457, 1436, 1395, 1320, 1285, 1228, 1061, 1020, 966, 780, 734, 423 cm⁻¹. HRMS (EI) *m*/*z*: [M]⁺ calcd for C₁₃H₁₂F₂S 238.0623; found 238.0623.

(*Difluoromethyl*)(4-phenoxybutyl)sulfane (6n). Eluent: petroleum ether. Yellow oil,78.9 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 8.0, 7.4 Hz, 2H), 6.97 (dd, *J* = 8.0, 7.4 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.83 (t, *J* = 56.3 Hz, 1H), 4.00 (t, *J* = 5.5 Hz, 2H), 2.90 (t, *J* = 6.7 Hz, 2H), 1.99–1.85 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.68 (d, *J* = 56.3 Hz, 2F). ¹³C{¹H} NMR(101 MHz, CDCl₃) δ 159.0 (s), 129.6 (s), 120.8 (s), 120.8 (t, *J* = 272.8 Hz), 114.6 (s), 67.1 (s), 28.3 (s), 27.0 (t, *J* = 3.2 Hz). IR (KBr): 3064, 3040, 2947, 2871, 1600, 1587, 1498, 1473, 1390, 1330, 1302, 1244, 1172, 1049, 948, 883, 803, 755, 692, 542 cm⁻¹. HRMS (EI) *m/z*: [M]⁺calcd for C₁₁H₁₄F₂OS 232.0728; found 232.0729.

(Difluoromethyl)(dodecyl)sulfane (60).^{4a} Eluent: petroleum ether. Colorless oil, 110.0 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.79 (t, J = 56.5 Hz, 1H), 2.79 (t, J = 7.5 Hz, 2H), 1.71–1.61 (m, 2H), 1.44–1.34 (m, 2H), 1.34–1.22(m, 16H), 0.88 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.83 (d, J = 56.5 Hz, 2F). Ethyl 6-((difluoromethyl)thio)hexanoate (6p).^{4a} Eluent: petro-

*Ethyl 6-((difluoromethyl)thio)hexanoate (6p).*⁴⁰ Eluent: petroleum ether/ethyl acetate (20:1). Colorless oil, 83.7 mg, 74%. ¹H NMR (400 MHz, CDCl₃) δ 6.79 (t, *J* = 56.3 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.79 (t, *J* = 7.4 Hz, 2H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.67 (tt, *J* = 15.3, 7.5 Hz, 4H), 1.50–1.38 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.80 (d, *J* = 56.4 Hz, 2F).

4-(((Difluoromethyl)thio)methyl)benzamide (**6***q*). Eluent: dichloromethane/methanol (100:1). White solid, mp 141.0 °C. 49.8 mg, 46% yield. ¹H NMR (400 MHz, CD₃CN) δ 7.80 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 6.99 (t, *J* = 56.2 Hz, 1H), 6.76 (br, 1H), 6.02 (br, 1H), 4.11 (s, 2H). ¹⁹F NMR (376 MHz, CD₃CN) δ -94.72 (d, *J* = 56.4 Hz, 2F). ¹³C{H} NMR (126 MHz, CD₃CN) δ 168.2, 141.2, 133.1, 128.9, 127.9, 121.3 (t, *J* = 270.2 Hz), 30.9 (t, *J* = 3.5 Hz). IR (KBr): 3374, 3182, 1645, 1621, 1418, 1066, 1004, 783 cm⁻¹. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₉H₁₀F₂NO₅ 218.0446; Found 218.0447.

(*Difluoromethyl*)(2-*nitrobenzyl*)sulfane (**6***r*). Eluent: petroleum ether/ethyl acetate (1:1). Yellow oil, 54.9 mg, 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.61 (td, *J* = 7.5, 1.4 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.51–7.43 (m, 1H), 6.81 (t, *J* = 55.8 Hz, 1H), 4.34 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –93.44 (d, *J* = 55.8 Hz, 2F). ¹³C {H} NMR (126 MHz, CDCl₃) δ 148.0, 133.8, 133.6, 132.3, 128.9, 125.6, 120.2 (t, *J* = 273.9 Hz), 29.2 (t, *J* = 3.8 Hz). HRMS (DART) *m*/*z*: [M–H]⁻ calcd for C₈H₆F₂NO₂S 218.0093; found 218.0090.

Preliminary Mechanistic Studies. Into a 15 mL Schlenk tube were added **1a**, KSeCN, $Ph_3P^+CF_2D$ Br⁻ (589.8 mg, 1.5 mmol, 3.0 equiv) (89% deuterated), Cs_2CO_3 (325.8 mg, 1.0 mmol, 2.0 equiv), 4 Å molecular sieve (125 mg) and EA (2.5 mL) under a N₂ atmosphere.

pubs.acs.org/joc

The resulting mixture was stirred at 50 °C (oil bath) for 12 h under a N₂ atmosphere. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, the crude reaction mixture was diluted with EA (20 mL). The solution was washed with water (20 mL) and brine (20 mL), then dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to flash column chromatography (eluent: petroleum ether) to give the final product. The D/H ratio of the final product was determined by ¹⁹F NMR spectroscopy. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 4.17 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.54 (t, *J* = 8.5 Hz, 2F). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 140.6, 140.4, 136.4, 129.4, 128.9, 127.6, 127.5, 127.1, 115.4 (tt, *J* = 285.8, 31.4 Hz), 26.0 (t, *J* = 3.0 Hz).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c01718.

Copies of ¹H, ¹³C, and ¹⁹F NMR spectra for all compounds. (PDF)

AUTHOR INFORMATION

Corresponding Author

Ji-Chang Xiao – Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; orcid.org/0000-0001-8881-1796; Email: jchxiao@sioc.ac.cn

Authors

- Min Zhang Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Jin-Hong Lin Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China; Orcid.org/0000-0002-7000-9540

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c01718

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation (21971252, 21991122), Key Research Program of Frontier Sciences, and Chinese Academy of Sciences (CAS) (QYZDJSSWSLH049) for financial support.

REFERENCES

(1) Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. *Chem. Rev.* **1991**, *91*, 165–195.

(2) (a) Shimizu, K. New antimicrobial agent series XXXIII: Flomoxef. *Jpn. J. Antibiot.* **1988**, *41*, 1809–1821. (b) Ito, M.; Ishigami, T. The meaning of the development of flomoxef and clinical experience in Japan. *Infection* **1991**, *19*, S253–S257.

(3) (a) Uneyama, K.; Maeda, K.; Tokunaga, Y.; Itano, N. Reaction of difluoromethyl phenyl selenoxide with acetic anhydride. A route to

The Journal of Organic Chemistry

difluoro(phenylseleno)methylation of ethers. J. Org. Chem. **1995**, 60, 370–375. (b) Lin, Y.-M.; Yi, W.-B.; Shen, W.-Z.; Lu, G.-P. A Route to α -fluoroalkylsulfides from α -fluorodiaroylmethanes. Org. Lett. **2016**, 18, 592–595. (c) Suzuki, H.; Yoshinaga, M.; Takaoka, K.; Hiroi, Y. A simple synthesis of aryl difluoromethylselenides and tellurides. Synthesis **1985**, 1985, 497–499. (d) Mehta, V. P.; Greaney, M. F. S-, N-, and Se-Difluoromethylation using sodium chlorodifluoroace-tate. Org. Lett. **2013**, 15, 5036–5039. (e) Dong, T.; Nie, J.; Zhang, C.-P. A convenient, transition metal-free synthesis of difluoromethylselenoethers from organic selenocyanates and TMSCF₂H. Tetrahedron **2018**, 74, 5642–5649.

(4) (a) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Synthesis of difluoromethylthioethers from difluoromethyltrimethylsilane and organothiocyanates generated in situ. Angew. Chem., Int. Ed. 2015, 54, 5753-5756. (b) Jouvin, K.; Matheis, C.; Goossen, L. J. Synthesis of aryl tri- and difluoromethylthioethers via a C-Hthiocyanation/fluoroalkylation cascade. Chem. - Eur. J. 2015, 21, 14324-14327. (c) Ismalaj, E.; Le Bars, D.; Billard, T. Direct electrophilic (benzenesulfonyl)difluoromethylthiolation with a shelfstable reagent. Angew. Chem., Int. Ed. 2016, 55, 4790-4793. (d) Howard, J. L.; Schotten, C.; Alston, S. T.; Browne, D. L. Preparation of difluoromethylthioethers through difluoromethylation of disulfides using TMS-CF2H. Chem. Commun. 2016, 52, 8448-8451. (e) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. Radical difluororomethylation of thiols with difluoromethylphosphoniumtriflate under photoredox catalysis. J. Org. Chem. 2017, 82, 7373-7378. (f) Zhang, P.; Chen, W.; Liu, M.; Wu, H. Synthesis of 3-HCF₂Schromones through tandem oxa-michael addition and oxidative difluoromethylthiolation. Org. Lett. 2019, 21, 9326-9329. (g) Ding, T.; Jiang, L.; Yi, W.-B. Synthesis of difluoromethyl and deuteriumlabeleddifluoromethyl thioethers from aliphatic electrophiles. Chem. Commun. 2020, 56, 3995-3998.

(5) (a) Glenadel, Q.; Ismalaj, E.; Billard, T. Benzyltrifluoromethyl (or fluoroalkyl) selenide: reagent for electrophilic trifluoromethyl (or fluoroalkyl) selenolation. J. Org. Chem. 2016, 81, 8268-8275. (b) Ghiazza, C.; Tlili, A.; Billard, T. Direct α -C-H trifluoromethylselenolation of carbonyl compounds. Eur. J. Org. Chem. 2018, 2018, 3680-3683. (c) Ghiazza, C.; Glenadel, Q.; Tlili, A.; Billard, T. Trifluoromethylselenolation and fluoroalkylselenolation of alkenes by electrophilic addition. Eur. J. Org. Chem. 2017, 2017, 3812–3814. (d) Ghiazza, C.; Billard, T.; Tlili, A. Trifluoromethyl- and fluoroalkylselenolations of alkynyl Copper(I) compounds. Chem. -Eur. J. 2017, 23, 10013-10016. (e) Glenadel, Q.; Ismalaj, E.; Billard, T. A metal-free route to heterocyclic trifluoromethyl- and fluoroalkylselenolated molecules. Org. Lett. 2018, 20, 56-59. (f) Lu, K.; Li, Q.; Xi, X.; Zhou, T.; Zhao, X. Metal-free difluoromethylselenolation of arylamines under visible-light photocatalysis. J. Org. Chem. 2020, 85, 1224-1231. (g) Lu, K.; Xi, X.; Zhou, T.; Lei, L.; Li, Q.; Zhao, X. Copper-catalysed direct difluoromethylselenolation of aryl boronic acids with Se-(difluoromethyl) 4-methylbenzenesulfonoselenoate. Tetrahedron Lett. 2021, 68, 152897. (h) Guo, R. L.; Zhu, X. Q.; Zhang, X. L.; Wang, Y. Q. Synthesis of difluoromethylselenoesters from aldehydes via a radical process. Chem. Commun. 2020, 56, 8976-8979.

(6) (a) Jiang, L.; Ding, T.; Yi, W.-B.; Zeng, X.; Zhang, W.
Fluoroalkylsulfonyl chlorides promoted vicinal chloro-fluoroalkylthiolation of alkenes and alkynes. Org. Lett. 2018, 20, 2236-2240.
(b) Zhu, D.; Gu, Y.; Lu, L.; Shen, Q. N-Difluoromethylthiophthalimide: a shelf-stable, electrophilic reagent for difluoromethylthiolation. J. Am. Chem. Soc. 2015, 137, 10547-10553. (c) Wu, J.; Gu, Y.; Leng, X.; Shen, Q. Copper-promoted sandmeyerdifluoromethylthiolation of aryl and heteroaryl diazonium salts. Angew. Chem., Int. Ed. 2015, 54, 7648-7652. (d) Zhu, D.; Shao, X.; Hong, X.; Lu, L.; Shen, Q. PhSO₂SCF₂H: a shelf-stable, easily scalable reagent for radical difluoromethylthiolation. Angew. Chem., Int. Ed. 2016, 55, 15807-15811. (e) Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Difluoromethylthiolation of phenols and related compounds with a HF₂CSO₂Na/Ph₂PCI/Me₃SiCl system. Org. Lett. 2017, 19, 934-937. (f) Wu, J.; Lu, Y.; Lu, C.; Shen, Q. Palladium-catalyzeddifluor

pubs.acs.org/joc

Note

omethylthiolation of heteroaryl bromides, iodides, triflates and aryl iodides. Chem. Sci. 2016, 7, 3757-3762. (g) Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Radical difluoromethylthiolation of aromatics enabled by visible light. Chem. Sci. 2018, 9, 5781-5786. (h) Guo, S.-H.; Zhang, X.-L.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q. Synthesis of difluoromethylthioesters from aldehydes. Angew. Chem., Int. Ed. 2018, 57, 1663-1667. (i) Ding, T.; Jiang, L.; Yi, W.-B. One-pot synthesis of difluoromethylthioethers from thiourea and diethyl bromodifluoromethylphosphonate. Org. Lett. 2018, 20, 170-173. (j) Xing, B.; Ni, C.; Hu, J. Copper-mediated di- and monofluoromethanesulfonylation of arenediazoniumtetrafluoroborates: probing the fluorine effect. Chin. J. Chem. 2018, 36, 206-212. (k) Dong, J.; Yue, F.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Light-mediated difluoromethylthiolation of aldehydes with a hydrogen atom transfer photocatalyst. Org. Lett. 2020, 22, 8272-8277. (1) Wei, J.; Bao, K.; Wang, Y.; Sheng, R.; Hu, J. Novel usage of 2-BTSO₂CF₂H for metalfree electrophilic difluoroalkanethiolation of indoles. Org. Biomol. Chem. 2020, 18, 4556-4559.

(7) (a) Xiao, X.; Zheng, Z.-T.; Li, T.; Zheng, J.-L.; Tao, T.; Chen, L.-M.; Gu, J.-Y.; Yao, X.; Lin, J.-H.; Xiao, J.-C. Recent Advances in Difluoromethylthiolation. *Synthesis* **2020**, *52*, 197–207. (b) Yan, Q.; Jiang, L.; Yi, W.-B. Recent Progress on Direct Difluoromethylthiolation and Monofluoromethylthiolation. *Youji Huaxue* **2020**, *40*, 1–14.

(8) (a) Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Direct nucleophilic difluoromethylation of carbonyl compounds. *Org. Lett.* **2016**, *18*, 3206–3209. (b) Deng, Z.; Lin, J.-H.; Xiao, J.-C. Nucleophilic arylation with tetraarylphosphonium salts. *Nat. Commun.* **2016**, *7*, 10337.

(9) (a) Dilman, A. D.; Levin, V. V. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions. *Acc. Chem. Res.* **2018**, *51*, 1272–1280. (b) Lin, J.-H.; Xiao, J.-C. Fluorinated Ylides/ Carbenes and Related Intermediates from Phosphonium/Sulfonium Salts. *Acc. Chem. Res.* **2020**, *53*, 1498. (c) Zhang, C. Recent Developments in Trifluoromethylation or Difluoroalkylationby Use of Difluorinated Phosphonium Salts. *Adv. Synth. Catal.* **2017**, *359*, 372.

(10) Naganawa, A.; Matsui, T.; Ima, M.; Saito, T.; Murota, M.; Aratani, Y.; Kijima, H.; Yamamoto, H.; Maruyama, T.; Ohuchida, S.; Nakai, H.; Toda, M. Further optimization of sulfonamideanalogs as EP1 receptor antagonists: Synthesis and evaluation of bioisosteres for the carboxylic acid group. *Bioorg. Med. Chem.* **2006**, *14*, 7121.

(11) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Difluoromethylation and gem-difluorocyclopropenation with difluorocarbene generated by decarboxylation. *Chem. Commun.* **2015**, *51*, 8805–8808.