

Pd-Catalyzed Transfer of Difluorocarbene for Three Component Cross-Coupling[†]

Zhi-Wei Xu,^{‡,a,b} Wei Zhang,^{‡,b} Jin-Hong Lin,^{*,b} Chuan-Ming Jin,^{*,a} and Ji-Chang Xiao^{*,b}

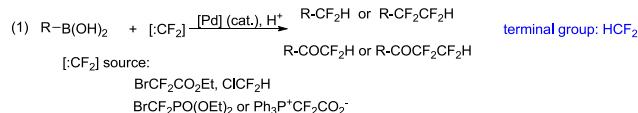
^a Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

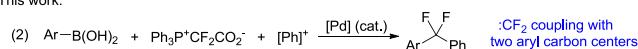
Cite this paper: *Chin. J. Chem.* 2020, 38, 1647–1650. DOI: 10.1002/cjoc.202000297

Summary of main observation and conclusion Outstanding accomplishments have been achieved in the chemistry of difluorocarbene, but transition-metal-catalyzed transfer of difluorocarbene for coupling remains a challenging task. Herein, we describe a Pd-catalyzed coupling of difluorocarbene with two aryl carbon centers to give difluoromethylation products, which cannot be obtained by any previous difluorocarbene-transformation method.

Background and Originality Content


As the incorporation of fluorine atoms into organic molecules may lead to profound changes of their physicochemical properties, fluorine element has been recognized as a magic atom in various research areas, such as pharmaceutical/agrochemical developments and material sciences.^[1] Difluorocarbene has proved to be a valuable intermediate for fluorine incorporation.^[2] Typical difluorocarbene reactions include [2+1] cyclization of alkenes/alkynes^[3] and difluoromethylation of X–H bonds (X = heteroatom).^[4] Hu disclosed an efficient C–H difluoromethylation by using TMSCF_2Br , a reagent developed by them recently,^[5] as a difluorocarbene source.^[6] Difluorocarbene can also act as a dipolar CF_2 unit for consecutive bond-forming reactions,^[7] which were described by Dilman.^[8] Outstanding accomplishments have been achieved in the chemistry of difluorocarbene. However, the transition-metal-catalyzed transfer of difluorocarbene remains a challenging research area, despite the fact that metal carbenes have found widespread applications in organic synthesis.^[9]

Traditional methods for the formation of metal-difluorocarbene complexes require a two-step procedure, the synthesis of M-CF_3 complexes and the subsequent defluorination.^[10] In the previous studies of metal difluorocarbene species, a stoichiometric amount of metal sources was usually used and metal complexes were obtained as desired products.^[10–11] Transition-metal-catalyzed coupling of difluorocarbene with other partners is quite challenging due to the high reactivity of difluorocarbene and side reactions of M=CF_2 intermediates.^[12] Recently, Zhang reported highly effective catalytic methods to obtain various HCF_2 -containing products (Scheme 1, eq 1).^[13] On the basis of their work on Pd-catalyzed difluoromethylation of aryl boronic acids with $\text{BrCF}_2\text{CO}_2\text{Et}$,^[13a] they further developed a more efficient method by using inexpensive and abundant industrial raw material ClCF_2H , which is also an ozone-depletion chemical, as a difluorocarbene source.^[13b] Interestingly, they found that the nucleophilicity and electrophilicity of Pd=CF_2 species is controllable by switching the oxidation state of Pd: $\text{Pd}^0=\text{CF}_2$ is a nucleophile and $\text{Pd}^{II}=\text{CF}_2$ is an electrophile. The successive coordination of $:\text{CF}_2/\text{CF}_2$ or $:\text{CF}_2/\text{CO}$ to Pd complexes was achieved to enable access to various products containing a CF_2CF_2 , COCF_2 or COCF_2CF_2 unit.^[13c] We have also


developed a difluoromethylation of boronic acids with $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$ via a difluorocarbene coupling (eq 1).^[14] The above catalytic methods involve the coupling of difluorocarbene with a carbon center and a proton to afford products with HCF_2 as a terminal group. In continuation of our interest in the chemistry of difluorocarbene,^[15] we have now investigated a Pd-catalyzed three-component coupling between difluorocarbene and two different aryl carbon centers to provide difluoromethylation products (eq 2).

Scheme 1 Pd-catalyzed coupling of difluorocarbene with other partners

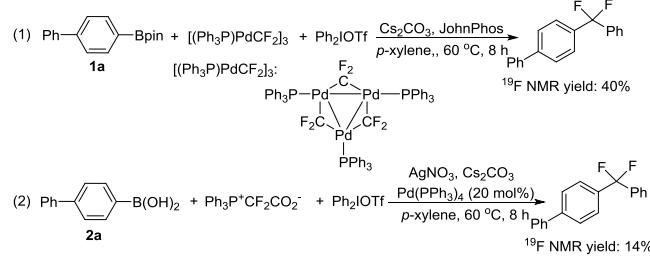
Previous work:

This work:

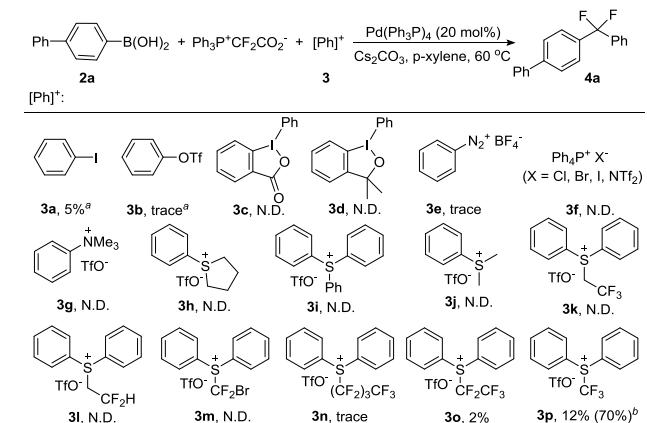
Results and Discussion

Since a proton source is needed in Pd-catalyzed difluoromethylation with difluorocarbene,^[13–14] an electrophilic carbon source would be necessary for the three-component coupling. We have previously shown that a trimer of Pd=CF_2 can be easily obtained from the reaction of $\text{Pd}(\text{PPh}_3)_4$ with $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$.^[14] It was found that the coupling between boronic ester **1a**, the Pd=CF_2 trimer and a phenyl cation equivalent, Ph_2IOTf , could give the desired difluoromethylation product in a 40% yield (Scheme 2, eq 1). Apparently, the stoichiometric use of Pd source would limit the practicability of this protocol. However, the use of $\text{Pd}(\text{PPh}_3)_4$ as a catalyst did not afford the desired product at all when $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$ was used as a difluorocarbene source. To our delight, a 14% yield was obtained by using boronic acid **2a** instead of boronic ester **1a** in the presence of another ligand and a silver salt (eq 2).

Although a low yield was obtained in the catalytic version, the successful coupling by using the trimer prompted us to further screen catalytic reaction conditions. Significant effort was made in


*E-mail: jlin@sioc.ac.cn; cmjin@hbnu.edu.cn; jchxiao@sioc.ac.cn

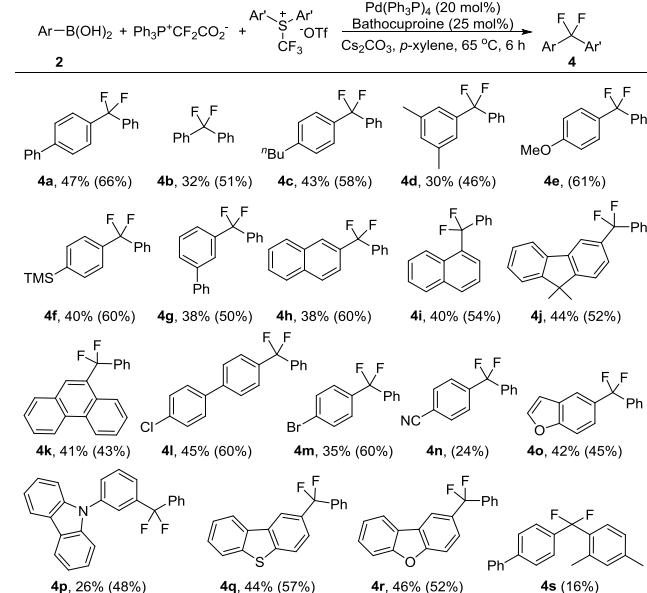
[†]Dedicated to the 70th Anniversary of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.


[‡]These authors contributed equally to this work.

For submission: <https://mc.manuscriptcentral.com/cjoc>

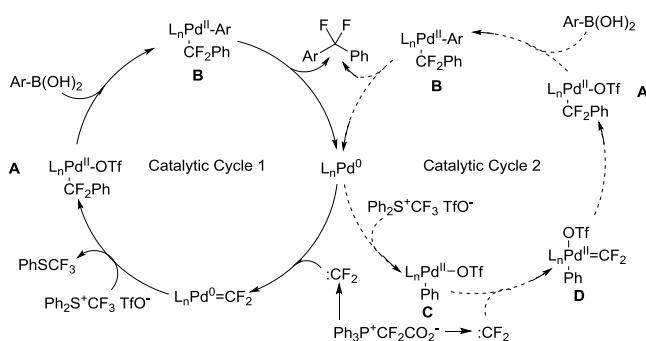
For articles: <https://onlinelibrary.wiley.com/journal/16147065>

Scheme 2 Preliminary investigation of the three-component coupling


order to increase the yield for the coupling between boronic acid **2a**, $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$ and Ph_2IOTf , but all attempts failed. We believed that the phenyl cation equivalent played an important role, and thus a variety of equivalents were examined (Scheme 3). No desired product was detected in most cases. Fortunately, using trifluoromethyl sulfonium salt (**3p**) as a phenyl cation equivalent delivered **4a** in 12% yield. The sulfonium salt has served as an effective trifluoromethylation reagent,^[16] and Zhang found that it can also act as an efficient phenylation reagent for coupling reactions.^[17] The 12% yield indicated the possibility of the catalytic reactions, and thus a large number of reaction conditions were further screened (Please see supporting information). After a detailed survey, the yield was increased to 70% by using bathocuproine as a ligand. After a detailed survey, the yield was increased to 70% by using bathocuproine as a ligand.

Scheme 3 Screening coupling reaction conditions

Reaction conditions: **2a** (0.1 mmol), $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$ (3 equiv), $[\text{Ph}]^+$ (1.5 equiv), $\text{Pd}(\text{PPh}_3)_4$ (20 mol%), Cs_2CO_3 (2 equiv) and *p*-xylene (1.5 mL) at 60 °C under a N_2 atmosphere for 8–12 h. N.D. = Not detected. The yields were determined by ¹⁹F NMR spectroscopy. ^a 1 equiv of $[\text{Ph}]^+$ was used and the reaction time was 4 h. ^b The molar ratio of **2a**: $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$: $[\text{Ph}]^+$ = 1:3:3, bathocuproine (25 mol%) was used as a ligand, 1 mL of *p*-xylene was used, and the reaction time was 6 h.


With the optimal reaction conditions in hand, we then investigated the substrate scope of the Pd-catalyzed coupling between aryl boronic acids, difluorocarbene and the sulfonium salt. As shown in Scheme 4, the coupling process was extended to a wide range of boronic acids. Electron-rich, -neutral and -deficient aryl boronic acids could all undergo coupling reactions to afford the desired products in moderate to good yields. But a strong electron donating group would destabilize the product and thus it is hard to isolate the product by flash column chromatography (**4e**). The compatibility of TMS (**4f**) and halide groups (**4l**–**4m**) under these conditions may allow for further transformations of these products. The direct coupling between substrate **2** and sulfonium salt **3p** cannot be completely suppressed and thus Ar-Ph was produced as a side product in each coupling reaction. The removal of

the side products led to lower isolated yields compared with the ¹⁹F NMR yields because of the similar polarity between the expected products and side products. The yield was dramatically decreased by using other sulfonium salt (**4s**).

Scheme 4 Substrate scope of the coupling reaction

nyl cation equivalents may be reactive for this coupling reaction. However, as shown in Scheme 3, most $[\text{Ph}]^+$ reagents failed. Therefore, catalytic cycle 2 is excluded. The coupling reaction can work only when an active $[\text{Ph}]^+$ reagent, $\text{Ph}_2\text{S}^+\text{CF}_3\text{ TfO}^-$, is used, probably because the $\text{Pd}^0=\text{CF}_2$ complex is a quite inert intermediate.

Scheme 5 The plausible mechanism

Conclusions

In summary, we have described the Pd-catalyzed transfer of difluorocarbene for three-component coupling reactions between aryl boronic acids, $\text{Ph}_3\text{P}^+\text{CF}_2\text{CO}_2^-$ and $\text{Ph}_2\text{S}^+\text{CF}_3\text{ TfO}^-$. This work represents the first example of coupling of difluorocarbene with two other aryl centers, and may provide more possibilities for the difluorocarbene chemistry.

Supporting Information

The supporting information for this article is available on the WWW under <https://doi.org/10.1002/cjoc.202000297>.

Acknowledgement

We thank the National Natural Science Foundation of China (Nos. 21421002, 21672242, 21971252, 21991122), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (QYZDJSSW-SLH049), and Youth Innovation Promotion Association CAS (2019256) for financial support.

References

- [1] (a) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. *J. Med. Chem.* **2015**, *58*, 8315–8359; (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). *Chem. Rev.* **2014**, *114*, 2432–2506; (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. *Chem. Rev.* **2016**, *116*, 422–518; (d) Kirsch, P. *Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications*, 2nd ed., Wiley-VCH, Weinheim, Germany, **2013**.
- [2] (a) Ni, C.; Hu, J. Recent Advances in the Synthetic Application of Difluorocarbene. *Synthesis* **2014**, *46*, 842–863; (b) Zhang, W.; Wang, Y. Recent advances in carbon-difluoroalkylation and -difluoroolefination with difluorocarbene. *Tetrahedron Lett.* **2018**, *59*, 1301–1308.
- [3] (a) Tian, F.; Kruger, V.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Doltbier, W. R., Jr.; Chen, Q.-Y. A Novel and Highly Efficient Synthesis of gem-Difluorocyclopropanes. *Org. Lett.* **2000**, *2*, 563–564; (b) Xu, W.; Chen, Q.-Y. A novel approach to cycloaddition of difluorocarbene to α,β -unsaturated aldehydes and ketones: Synthesis of gem-difluorocyclopropyl ketones and 2-fluorofurans. *Org. Biomol. Chem.* **2003**, *1*, 1151–1156; (c) Oshiro, K.; Morimoto, Y.; Amii, H. Sodium bromodifluoroacetate: a difluorocarbene source for the synthesis of gem-difluorocyclopropanes. *Synthesis* **2010**, 2080–2084; (d) Wang, F.; Luo, T.; Hu, J.; Wang, Y.; Krishnan, H.; Jog, P.; Ganesh, S.; Prakash, G.; Olah, G. Synthesis of gem-difluorinated cyclopropanes and cyclopropenes: trifluoromethyltrimethylsilane as a difluorocarbene source. *Angew. Chem. Int. Ed.* **2011**, *50*, 7153–7157.
- [4] (a) Zhang, L.; Zheng, J.; Hu, J. 2-Chloro-2,2-difluoroacetophenone: A Non-ODS-based difluorocarbene precursor and its use in the difluoromethylation of phenol derivatives. *J. Org. Chem.* **2006**, *71*, 9845–9848; (b) Zheng, J.; Li, Y.; Zhang, L.; Hu, J.; Meuzelaar, G. J.; Federsel, H.-J. Chlorodifluoromethyl phenyl sulfone: a novel non-ozone-depleting substance-based difluorocarbene reagent for O[−] and N-difluoromethylations. *Chem. Commun.* **2007**, 5149–5151.
- [5] (a) Li, L.; Wang, F.; Ni, C.; Hu, J. Synthesis of gem-Difluorocyclopropane(e)nes and O[−], S^{2−}, N[−], and P-Difluoromethylated Compounds with TMSCF_2Br . *Angew. Chem. Int. Ed.* **2013**, *52*, 12390–12394; (b) Hu, M.; Ni, C.; Li, L.; Han, Y.; Hu, J. gem-Difluoroolefination of Diazo Compounds with TMSCF_3 or TMSCF_2Br : Transition-Metal-Free Cross-Coupling of Two Carbene Precursors. *J. Am. Chem. Soc.* **2015**, *137*, 14496–14501; (c) Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Efficient Difluoromethylation of Alcohols Using TMSCF_2Br as a Unique and Practical Difluorocarbene Reagent under Mild Conditions. *Angew. Chem. Int. Ed.* **2017**, *56*, 3206–3210.
- [6] Xie, Q.; Zhu, Z.; Li, L.; Ni, C.; Hu, J. A General Protocol for C–H Difluoromethylation of Carbon Acids with TMSCF_2Br . *Angew. Chem. Int. Ed.* **2019**, *58*, 6405–6410.
- [7] Smirnov, V. O.; Volodin, A. D.; Korlyukov, A. A.; Dilman, A. D. Trapping of Difluorocarbene by Frustrated Lewis Pairs. *Angew. Chem. Int. Ed.* **2020**, *59*, 12428–12431.
- [8] Dilman, A. D.; Levin, V. V. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions. *Acc. Chem. Res.* **2018**, *51*, 1272–1280.
- [9] (a) Schrock, R. R. Multiple Metal–Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture). *Angew. Chem. Int. Ed.* **2006**, *45*, 3748–3759; (b) Doetz, K. H.; Stendel Jr, J. Fischer carbene complexes in organic synthesis: Metal-assisted and metal-templated reactions. *Chem. Rev.* **2009**, *109*, 3227–3274.
- [10] (a) Brothers, P. J.; Roper, W. R. Transition-metal dihalocarbene complexes. *Chem. Rev.* **1988**, *88*, 1293–1326; (b) Harrison, D. J.; Lee, G. M.; Leclerc, M. C.; Korobkov, I.; Baker, R. T. Cobalt Fluorocarbene: Cycloaddition Reactions with Tetrafluoroethylene and Reactivity of the Perfluorometallacyclic Products. *J. Am. Chem. Soc.* **2013**, *135*, 18296–18299; (c) Lee, G. M.; Harrison, D. J.; Korobkov, I.; Baker, R. T. Stepwise addition of difluorocarbene to a transition metal centre. *Chem. Commun.* **2014**, *50*, 1128–1130; (d) Harrison, D. J.; Daniels, A. L.; Korobkov, I.; Baker, R. T. d¹⁰ Nickel Difluorocarbene and Their Cycloaddition Reactions with Tetrafluoroethylene. *Organometallics* **2015**, *34*, 5683–5686; (e) Harrison, D. J.; Daniels, A. L.; Korobkov, I.; Baker, R. T. Tetracarbonyl(trifluoromethyl)cobalt(I) $[\text{Co}(\text{CO})_4(\text{CF}_3)]$ as a Precursor to New Cobalt Trifluoromethyl and Difluorocarbene Complexes. *Organometallics* **2015**, *34*, 4598–4604; (f) Leclerc, M. C.; Bayne, J. M.; Lee, G. M.; Gorelsky, S. I.; Vasiliu, M.; Korobkov, I.; Harrison, D. J.; Dixon, D. A.; Baker, R. T. Perfluoroalkyl Cobalt(III) Fluoride and Bis(perfluoroalkyl) Complexes: Catalytic Fluorination and Selective Difluorocarbene Formation. *J. Am. Chem. Soc.* **2015**, *137*, 16064–16073; (g) Tskhovrebov, A. G.; Lingnau, J. B.; Furstner, A. Gold Difluorocarbenoid Complexes: Spectroscopic and Chemical Profiling. *Angew. Chem. Int. Ed.* **2019**, *58*, 8834–8838.
- [11] (a) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. Facile and Reversible Cleavage of C–F Bonds. Contrasting Thermodynamic Selectivity for $\text{Ru-CF}_2\text{H}$ vs FOs=CFH . *J. Am. Chem. Soc.* **2000**, *122*, 8916–8931; (b) Hughes, R. P.; Laritchev, R. B.; Yuan, J.; Golen, J. A.; Rucker, A. N.; Rheingold, A. L. A Simple Route to Difluorocarbene and Perfluoroalkylidene Complexes of Iridium. *J. Am. Chem. Soc.*

- 2005, 127, 15020–15021; (c) Harrison, D. J.; Gorelsky, S. I.; Lee, G. M.; Korobkov, I.; Baker, T. R. Cobalt Fluorocarbene Complexes. *Organometallics* **2013**, 32, 12–15.
- [12] Takahira, Y.; Morizawa, Y. Ruthenium-Catalyzed Olefin Cross-Metathesis with Tetrafluoroethylene and Analogous Fluoroolefins. *J. Am. Chem. Soc.* **2015**, 137, 7031–7034.
- [13] (a) Feng, Z.; Min, Q.-Q.; Zhang, X. Access to Difluoromethylated Arenes by Pd-Catalyzed Reaction of Arylboronic Acids with Bromodifluoroacetate. *Org. Lett.* **2016**, 18, 44–47; (b) Feng, Z.; Min, Q. Q.; Fu, X. P.; An, L.; Zhang, X. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium. *Nature Chem.* **2017**, 9, 918–923; (c) Fu, X.-P.; Xue, X.-S.; Zhang, X.-Y.; Xiao, Y.-L.; Zhang, S.; Guo, Y.-L.; Leng, X.; Houk, K. N.; Zhang, X. Controllable catalytic difluorocarbene transfer enables access to diversified fluoroalkylated arenes. *Nature Chem.* **2019**, 11, 948–956.
- [14] Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. Pd-Catalyzed Transfer of Difluorocarbene. *Org. Lett.* **2016**, 18, 4384–4387.
- [15] (a) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Difluorocarbene-Derived Trifluoromethylthiolation and [¹⁸F]Trifluoromethylthiolation of Aliphatic Electrophiles. *Angew. Chem. Int. Ed.* **2015**, 54, 13236–13240; (b) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D. H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. An Unconventional Mechanistic Insight into SCF₃ Formation from Difluorocarbene: Preparation of ¹⁸F-Labeled alpha-SCF₃ Carbonyl Compounds. *Angew. Chem. Int. Ed.* **2017**, 56, 3196–3200; (c) Yu, J.; Lin, J.-H.; Yu, D.; Du, R.; Xiao, J.-C. Oxidation of difluorocarbene and subsequent trifluoromethoxylation. *Nat. Commun.* **2019**, 10, 5362.
- [16] Alonso, C.; Martinez de Marigorta, E.; Rubiales, G.; Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. *Chem. Rev.* **2015**, 115, 1847–1935.
- [17] (a) Wang, S. M.; Song, H. X.; Wang, X. Y.; Liu, N.; Qin, H. L.; Zhang, C. P. Palladium-catalyzed Mizoroki-Heck-type reactions of [Ph₂SRf][OTf] with alkenes at room temperature. *Chem. Commun.* **2016**, 52, 11893–11896; (b) Wang, S. M.; Wang, X. Y.; Qin, H. L.; Zhang, C. P. Palladium-Catalyzed Arylation of Arylboronic Acids with Yagupolskii-Umemoto Reagents. *Chem. Eur. J.* **2016**, 22, 6542–6546.
- [18] (a) Chen, B.; Vicic, D. A. Transition-metal-catalyzed difluoromethylation, difluoromethylation, and polydifluoromethylation reactions. *Top. Organomet. Chem.* **2014**, 52, 113–142; (b) Ni, C.; Hu, M.; Hu, J. Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis. *Chem. Rev.* **2015**, 115, 765–825; (c) Feng, Z.; Xiao, Y.-L.; Zhang, X. Transition-Metal (Cu, Pd, Ni)-Catalyzed Difluoroalkylation via Cross-Coupling with Difluoroalkyl Halides. *Acc. Chem. Res.* **2018**, 51, 2264–2278.
- [19] (a) Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Application of Dialkylaminosulfur Trifluorides in the Synthesis of Fluoroorganic Compounds. *Synthesis* **1973**, 1973, 787–789; (b) Middleton, W. J. New fluorinating reagents. Dialkylaminosulfur fluorides. *J. Org. Chem.* **1975**, 40, 574–578; (c) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. Bis(2-methoxyethyl)aminosulfur Trifluoride: A New Broad-Spectrum Deoxofluorinating Agent with Enhanced Thermal Stability. *J. Org. Chem.* **1999**, 64, 7048–7054.
- [20] Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K. The Difluoromethyl Group as a Masked Nucleophile: A Lewis Acid/Base Approach. *J. Am. Chem. Soc.* **2018**, 140, 9404–9408.
- [21] (a) Fensterbank, L.; Goddard, J.-P.; Malacria, M.; Ollivier, C. Homolytic Reduction of Onium Salts. *Chimia* **2012**, 66, 425–432; (b) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. Recent Advances on Palladium Radical Involved Reactions. *ACS Catal.* **2015**, 5, 6111–6137.

Manuscript received: May 30, 2020

Manuscript revised: July 22, 2020

Manuscript accepted: July 23, 2020

Accepted manuscript online: July 24, 2020

Version of record online: October 14, 2020