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A B S T R A C T

A large number of trifluoromethylthiolation methods have been developed, but a trifluoromethylthiolation re-
agent usually has to be used in these methods. Herein we describe a difluorocarbene-based tri-
fluoromethylthiolation of terminal alkynes to construct a CspeSCF3 bond catalysed by a copper complex.
Ph3P+CF2CO2−/S8/F− was used as a reagent system to form the CF3S− anion, and the sequential formation of
CF2]S, FeCF2S and CeSCF3 bonds was achieved in a one-step process.

1. Introduction

Due to its strong electron-withdrawing (Hammett constants
σp= 0.50, σm= 0.40) and high lipophilicity (Hansch lipophilicity
parameter π=1.44) effects [1–3], the trifluoromethylthio group (CF3S)
has received particular attention in the design of pharmaceuticals and
agrochemicals [4–6]. Many CF3S-containing biologically active mole-
cules have emerged recently, such as Toltrazuril, Tiflorex and Cefaza-
flur [6]. Therefore, significant efforts have been devoted to the devel-
opment of efficient methods for the incorporation of a CF3S group into
organic molecules [6–16]. A large number of trifluoromethylthiolation
reagents have been developed, including nucleophilic reagents, such as
AgSCF3 [17], CuSCF3 [18–23] and [R4N]+ −SCF3 [24,25], and elec-
trophilic reagents, such as NeSCF3 type [26–32], OeSCF3 type [33,34],
and CeSO2CF3 type [35] reagents. The emergence of the general tri-
fluoromethylthiolation reagents has allowed the development of a
variety of trifluoromethylthiolation approaches, including nucleophilic
[36–39], electrophilic [40–43] and radical [44–48] reactions, by which
various CeSCF3 bond could be effectively constructed.

The formation of a CspeSCF3 bond was usually achieved by tri-
fluoromethylthiolation of terminal alkynes. Qing described an oxidative
trifluoromethylthiolation with a nucleophilic reagent, TMSCF3/S8
system [49] or AgSCF3 [50] in the presence of an oxidant, to afford

CF3S-alkynes in moderate to high yields (Scheme 1, eq 1). Billard
[40,51,52], Rueping [29] and Shen [31,33,53] independently disclosed
the trifluoromethylthiolation of terminal alkynes with electrophilic
reagents (eq 1). The conversions were quite efficient, but suffered from
strong basic reaction conditions or the need of tedious procedures to
prepare the “CF3S” reagents. Other alkynes, including alkynyl silanes
[54], alkynyl acids [55], alkynyliodonium tosylates [56] and alkynyl
bromides [57], could also be converted into CF3S-alkynes by tri-
fluoromethylthiolation transformation (eq 2). Obviously, the need for
prefunctionalization of the substrates may limit their synthetic utility.
Therefore, the development of convenient protocols for the formation
of a CspeSCF3 bond is desirable.

Difluorocarbene has proved to be a versatile intermediate for the
incorporation of CF2 unit into molecules [58,59]. We recently devel-
oped a difluorocarbene reagent, Ph3P+CF2CO2− [60,61], and found
that difluorocarbene could react with a suitable sulfur source to gen-
erate thiocarbonyl fluoride (CF2]S) [62–64]. CF2]S is an electrophilic
species and could be readily trapped by F− anion to provide CF3S−

anion. This process was developed into a synthetic tool to enable 18F-
trifluoromethylthioaltion of alkyl electrophiles [62,63] and dehydroxy-
trifluoromethylthiolation of alcohols [65]. On the basis of these tri-
fluoromethylthiolation conversions, we have now investigated the di-
fluorocarbene-based trifluoromethylthiolation of terminal alkynes
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catalyzed by a copper complex (Scheme 1, eq 3). A sequential formation
of CF2]S, FeCF2S and CeSCF3 bonds was achieved in a one-step
process. Ph3P+CF2CO2−, which was used as the difluorocarbene source
in the transformations, could be easily prepared by a one-step reaction
and purified by a simple washing procedure, and therefore the oper-
ationally convenient trifluoromethylthiolation protocol would be quite
attractive.

2. Results and discussion

Although DMF was found to be a suitable solvent in the oxidative
trifluoromethylthiolation [49], no desired product was observed in our
initial attempts at the trifluoromethylthiolation of alkyne 1a with the
Ph3P+CF2CO2−/S8/F− system (Table 1, entry 1). To our delight, a 3 %
yield was obtained by using ethyl acetate as the solvent (entry 2), which
encouraged us to further screen other solvents. After the identification
of the suitable solvent, THF (entry 4), we then examined various
fluoride sources (entries 4–7). The lower solubility of KF did not lead to
the decrease in the yield. Instead, the yield was increased to 26 % (entry
5 vs entry 4). Interestingly, decreasing the loadings of the copper
complex gave higher yields (entries 8–9 vs entry 5), but no expected
product was generated without using the copper complex (entry 11),
indicating that the copper complex is essential for this conversion. A
brief survey of the copper sources revealed that CuI was a superior
choice (entry 9 vs entries 12–14). The use of a tertiary amine as the base
afforded moderate yields (entries 9 and 15), but the desired transfor-
mation was completely suppressed when using a secondary amine
(entry 16). The yield was increased by increasing the loadings of
Ph3P+CF2CO2− and S8 (entries 17–18). A high yield was obtained by
replacing the ligand L1 with L4 (entry 21).

With the optimal reaction conditions in hand (Table 1, entry 21), we
then investigated the substrate scope of the difluorocarbene-based tri-
fluoromethylthiolation of terminal alkynes. As shown in Scheme 2, a
wide range of terminal alkynes could be converted smoothly into the
desired products in moderate to good yields. The examination of elec-
tronic effects showed that neither electron-donating nor -withdrawing
groups had obvious side effects on the conversion of phenyl alkynes
(3a-3 l). Pyridine heterocylces could be tolerated under these

conditions (3 m). Besides phenyl alkynes, alkyl alkynes were also found
to be reactive towards this conversion, but lower yields were obtained
(3n-3o).

On the basis of the above results and our previous observations on
difluorocarbene-based trifluoromethylthiolation [62,63,65], we pro-
pose that the mechanism shown in Scheme 3 is plausible. The CF3S−

anion generated from Ph3P+CF2CO2− via :CF2 followed by CF2]S
coordinates to the copper center to give CuISCF3 complex. The co-
ordination of the terminal alkynes to CuISCF3 (intermediate A) in-
creases the acidity of the terminal proton and thus a deprotonation
would readily occur to provide copper acetylide (intermediate B).
Elemental sulfur (S8) may oxidize CuI to CuIII (intermediate C), and the
subsequent reductive elimination delivers the final products and re-
leases the catalyst.

3. Conclusions

In summary, we have described the difluorocarbene-based tri-
fluoromethylthiolation of terminal alkynes with the Ph3P+CF2CO2−/
S8/F− system. A sequential formation of CF2]S, FeCF2S and CeSCF3
bonds was achieved in a one-step transformation. The tri-
fluoromethylthiolation protocol is attractive as Ph3P+CF2CO2− is easily
available and shelf-stable. This process may find application in 18F-
trifluoromethylthiolation since an external fluoride anion is involved
for the construction of the CF3S moiety.

4. Experimental section

4.1. General remark

1H, 13C and 19F NMR spectra were detected on a 400MHz or
300MHz NMR spectrometer. Data for 1H NMR, 13C NMR and 19F NMR
were recorded as follows: chemical shift (δ, ppm), multiplicity
(s= singlet, d= doublet, t= triplet, m=multiplet, q= quartet, cou-
pling constant (s) in Hz). Mass spectra were obtained on GC–MS (EI).
High resolution mass data were recorded on a high resolution mass
spectrometer in the EI mode.

Scheme 1. The formation of CspeSCF3 bond by trifluoromethylthiolation.
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4.2. General procedure for trifluoromethylthiolation

In to a 10ml sealed tube were added alkynes 1 (0.4mmol),
Ph3P+CF2CO2− (570.1mg, 1.6 mmol), S8 (153.9mg, 0.6mmol), CuI
(15.2 mg, 0.08mmol), 4,4’-di-tert-butyl-2,2’-bipyridine (21.5mg,
0.08mmol), KF (139.4mg, 2.4mmol), TMEDA (92.9mg, 0.8 mmol)
and anhydrous THF (4mL) under a N2 atmosphere. The tube was sealed
and the resulting mixture was stirred at 60 °C for 3 h. After being cooled
to room temperature, the mixture was filtered through a plug of Celite,
and the solid was washed with DCM. The combined organic phase was
washed with brine (10mL×3) and water (10mL×3) and dried with
Na2SO4. The solvent was removed by concentration under vacuum, and
the residue was subjected to flash column chromatography to give the
final products.

4.3. Characterization of the products

(3a) [49]: White solid, 85 %. 1H NMR (400MHz, CDCl3) δ 7.62 –
7.57 (m, 6 H), 7.47 (t, J =7.4 Hz, 2 H), 7.43 – 7.37 (m, 1 H). 19F NMR
(376MHz, CDCl3) δ −43.6 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 142.6
(s), 140.0 (s), 132.7 (s), 129.0 (s), 128.2 (q, J =312.5 Hz), 128.0 (s),
127.2 (s), 127.1 (s), 120.4 (s), 101.3 (s), 67.3 (q, J =4.1 Hz). GC–MS
(EI): Calculated for C15H9F3S [M]+: 278.0; Found: 278.1.

(3b) [49]: Colorless oil, 71 %. 1H NMR (400MHz, CDCl3) δ 7.45 (d,
J =8.6 Hz, 2 H), 7.37 (d, J =8.6 Hz, 2 H), 1.32 (s, 9 H). 19F NMR
(376MHz, CDCl3) δ −43.9 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 152.3
(s), 131.1 (s), 127.1 (q, J =312.5 Hz), 124.5 (s), 117.5 (s), 100.5 (s),
64.8 (q, J =4.1 Hz), 33.9 (s), 30.0 (s). GC–MS (EI): Calculated for
C13H13F3S [M]+: 258.1; Found: 258.1.

(3c) [49]: Yellow solid, 68 %. 1H NMR (400MHz, CDCl3) δ 7.38 (d,
J =8.7 Hz, 2 H), 6.60 (d, J =8.9 Hz, 2 H), 2.99 (s, 6 H). 19F NMR
(376MHz, CDCl3) δ −44.7 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 151.1
(s), 134.3 (s), 128.2 (q, J =312.6 Hz), 111.5 (s), 107.8 (s), 103.2 (s),
63.9 (q, J =4.4 Hz), 40.0 (s). GC–MS (EI): Calculated for C11H10F3NS
[M]+: 245.0; Found: 245.0.

(3d): Pale yellow oil, 81 %. 1H NMR (400MHz, CDCl3) δ 7.46 (d, J
=8.8 Hz, 2 H), 7.36 (t, J =7.9 Hz, 2 H), 7.17 (t, J =7.5 Hz, 1 H), 7.03
(d, J =8.4 Hz, 2 H), 6.93 (d, J =8.7 Hz, 2 H). 19F NMR (376MHz,
CDCl3) δ −43.9 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 159.2 (s), 155.9
(s), 134.4 (s), 130.0 (s), 128.2 (q, J =312.5 Hz), 124.3 (s), 119.9 (s),
118.1 (s), 115.7 (s), 101.0 (s), 66.0 (q, J =4.2 Hz). HRMS (EI):
Calculated for C15H9OF3S [M]+: 294.0326; Found 294.0330. IR (neat)
ν: 2962, 2176, 1588, 1504, 1489, 1281, 1246, 1165, 1104, 908, 880,
862, 837, 750, 735, 692 cm−1.

(3e) [49]: Pale yellow oil, 80 %. 1H NMR (400MHz, CDCl3) δ 7.45
(d, J =8.7 Hz, 2 H), 6.85 (d, J =8.8 Hz, 2 H), 3.81 (s, 3 H). 19F NMR
(376MHz, CDCl3) δ −44.1 (s, 3 F) 13C NMR (101MHz, CDCl3) δ 160.9
(s), 134.4 (s), 128.2 (q, J =312.4 Hz), 114.1 (s), 113.5 (s), 101.5 (s),
65.2 (q, J =4.4 Hz)., 55.3 (s). GC–MS (EI): Calculated for C10H7F3OS
[M]+: 232.0; Found: 232.0.

(3f): Pale yellow oil, 88 %. 1H NMR (400MHz, CDCl3) δ 7.44 (dd,
J=7.6, 1.7 Hz, 1 H), 7.34 (ddd, J=8.4, 7.6, 1.7 Hz, 1 H), 6.91 (td,
J=7.5, 0.9 Hz, 1 H), 6.87 (d, J =8.4 Hz, 1 H), 3.87 (s, 3 H). 19F NMR
(376MHz, CDCl3) δ −43.9 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 160.8
(s), 134.2 (s), 131.4 (s), 128.2 (q, J =312.5 Hz), 120.5 (s), 110.9 (s),
97.9 (s), 70.2 (q, J =4.2 Hz), 55.8 (s). HRMS (EI): Calculated for
C10H7OF3S [M]+: 232.0170; Found: 232.0172. IR (neat) V: 2938, 2178,
1596, 1576, 1491, 1465, 1435, 1282, 1262, 1161, 1104, 1047, 1025,

Table 1
The optimization of the reaction contidions.a

Entry F− [Cu] (mol %) Ligand (mol %) Base Molar ratiob Yield (%)c

1d CsF CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 0
2e CsF CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 3
3f CsF CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 8
4g CsF CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 14
5 KF CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 26
6 NaF CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 13
7 TBAT CuI (100) L1 (100) Et3N 1 : 2.5 : 0.9 10
8 KF CuI (50) L1 (50) Et3N 1 : 2.5 : 0.9 31
9 KF CuI (20) L1 (20) Et3N 1 : 2.5 : 0.9 44
10 KF CuI (10) L1 (10) Et3N 1 : 2.5 : 0.9 30
11 KF – – Et3N 1 : 2.5 : 0.9 0
12 KF CuBr (20) L1 (20) Et3N 1 : 2.5 : 0.9 trace
13 KF CuCl (20) L1 (20) Et3N 1 : 2.5 : 0.9 trace
14 KF CuOTf (20) L1 (20) Et3N 1 : 2.5 : 0.9 trace
15 KF CuI (20) L1 (20) TMEDA 1 : 2.5 : 0.9 46
16 KF CuI (20) L1 (20) Et2NH 1 : 2.5 : 0.9 0
17 KF CuI (20) L1 (20) TMEDA 1 : 3 : 1.1 57
18 KF CuI (20) L1 (20) TMEDA 1 : 4 : 1.5 73
19h KF CuI (20) L2 (20) TMEDA 1 : 4 : 1.5 82
20h KF CuI (20) L3 (20) TMEDA 1 : 4 : 1.5 77
21h KF CuI (20) L4 (20) TMEDA 1 : 4 : 1.5 84

a Reaction conditions: substrate 1a (0.2 mmol), 2, S8, F− (1.2mmol), copper source [Cu], ligand, base (0.4mmol) in THF (2mL) at 60 °C for 2 h under a N2
atmosphere; TBAT = n-tetrabutylammonium triphenyldifluorosilicate; TMEDA = N,N,N′,N′-tetramethylethylenediamine.

b Molar ratio of 1a:2:S8.
c Determined by 19F NMR spectroscopy.
d DMF was used as the solvent.
e EtOAc was used as the solvent.
f 1,4-dioxane was used as the solvent.
g THF was used as the solvent.
h The reaction time was 3 h.
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782, 752 cm−1.
(3 g) [54]: Pale yellow oil, 80 %. 1H NMR (400MHz, CDCl3) δ 7.24

(t, J =7.9 Hz, 1 H), 7.08 (dt, J=7.6, 1.1 Hz, 1 H), 7.00 (dd, J=2.3,
1.5 Hz, 1 H), 6.94 (ddd, J=8.4, 2.6, 0.9 Hz, 1 H), 3.79 (s, 3 H). 19F
NMR (376MHz, CDCl3) δ −43.6 (s, 3 F). 13C NMR (101MHz, CDCl3) δ
159.4 (s), 129.5 (s), 128.1 (q, J=312.5 Hz), 124.7 (s), 122.4 (s), 116.8
(s), 116.4 (s), 101.3 (s), 66.5 (q, J =4.4 Hz), 55.3 (s). GC–MS (EI):
Calculated for C10H7F3OS [M]+: 232.0; Found: 232.0.

(3 h): Pale yellow oil, 87 %. 1H NMR (400MHz, CDCl3) δ 7.39 (d, J
=8.5 Hz, 1 H), 6.74 (d, J=2.5 Hz, 1 H), 6.69 (dd, J=8.5, 2.6 Hz, 1 H),
3.80 (s, 3 H), 2.41(s, 3 H). 19F NMR (376MHz, CDCl3) δ −44.4 (s, 3 F).
13C NMR (101MHz, CDCl3) δ 160.8 (s), 143.8 (s), 134.4 (s), 128.3 (q, J
=312.3 Hz), 115.2 (s), 113.6 (s), 111.4 (s), 100.6 (s), 68.4 (q, J
=4.2 Hz), 55.2 (s), 20.7 (s). HRMS (EI): Calculated for C11H9OF3S
[M]+: 246.0326; Found: 246.0330. IR (neat) ν: 2961, 2840, 2166,

1605, 1564, 1497, 1466, 1315, 1299, 1283, 1260, 1232, 1157, 1103,
1042, 869, 849, 808, 756 cm−1.

(3i) [49]: White solid, 84 %. 1H NMR (400MHz, CDCl3) δ 7.96 (s,
1 H), 7.69 (d, J =8.9 Hz, 1 H), 7.67 (d, J =8.4 Hz, 1 H), 7.46 (dd,
J=8.5, 1.6 Hz, 1 H), 7.16 (dd, J=8.9, 2.5 Hz, 1 H), 7.09 (d, J
=2.5 Hz, 1 H), 3.91 (s, 3 H). 19F NMR (376MHz, CDCl3) δ −43.8 (s,
3 F). 13C NMR (101MHz, CDCl3) δ 158.9 (s), 134.9 (s), 132.8 (s), 129.6
(s), 128.9 (s), 128.18 (s), 128.15 (q, J=312.7 Hz), 127.0 (s), 119.7 (s),
116.3 (s), 105.8 (s), 102.0 (s), 66.0 (s), 55.3 (s). GC–MS (EI): Calculated
for C14H9F3OS [M]+: 282.0; Found: 282.0.

(3 j) [49]: Pale yellow solid, 81 %. 1H NMR (400MHz, CDCl3) δ
8.46 (d, J =9.1 Hz, 1 H), 8.25 – 8.01 (m, 8 H). 19F NMR (376MHz,
CDCl3) δ −43.6 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 132.7 (s), 132.1
(s), 130.9 (s), 130.7 (s), 123.0 (s), 128.8 (s), 128.8 (s), 128.3 (q, J
=312.7 Hz), 126.9 (s), 126.3 (s), 126.0 (s), 125.9 (s), 124.7 (s), 124.2
(s), 124.0 (s), 123.8 (s), 115.4 (s), 100.7 (s), 71.5 (q, J =4.1 Hz).
GC–MS (EI): Calculated for C19H9F3S [M]+: 326.0; Found: 326.1.

(3k): Pale yellow solid (m.p. 100–101 °C), 78 %. 1H NMR (400MHz,
CDCl3) δ 7.78 (d, J =7.3 Hz, 1 H), 7.73 (d, J =7.9 Hz, 1 H), 7.66 (s,
1 H), 7.55 (d, J =7.7 Hz, 1 H), 7.52 (d, J =7.9 Hz, 1 H), 7.39 (t, J
=7.2 Hz, 1 H), 7.36 – 7.31 (m, 1 H), 3.87 (s, 2 H). 19F NMR (376MHz,
CDCl3) δ −43.8 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 143.8 (s), 143.4
(s), 143.2 (s), 140.7 (s), 131.4 (s), 128.9 (s), 128.1 (q, J =312.5 Hz),
127.6 (s), 127.0 (s), 125.2 (s), 120.5 (s), 119.9 (s), 119.4 (s), 102.1 (s),
66.4 (q, J =4.3 Hz), 36.71 (s). HRMS (EI): Calculated for C16H9F3S
[M]+: 290.0377; Found: 290.0369. IR (neat) ν : 3070, 2173, 1607,
1464, 1454, 1418, 1399, 1176, 1162, 1150, 1131, 1101, 952, 875, 839,
770, 755, 737, 593 cm−1.

(3 l) [49]: Yellow oil, 75 %. 1H NMR (400MHz, CDCl3) δ 8.00 (d, J
=8.6 Hz, 2 H), 7.52 (d, J=8.6 Hz, 2 H), 4.37 (q, J=7.1 Hz, 2 H), 1.38
(t, J =7.1 Hz, 3 H). 19F NMR (376MHz, CDCl3) δ −43.3 (s, 3 F). 13C
NMR (101MHz, CDCl3) δ 165.7 (s), 131.6 (s), 131.1 (s), 129.5 (s),
127.9 (q, J =312.6 Hz), 125.8 (s), 100.5 (s), 69.9 (q, J =4.4 Hz), 61.3

Scheme 2. Difluorocarbene-based trifluoromethylthiolation of terminal alkynes. Isolated yields. Reaction conditions: substrate 1 (0.4mmol), 2 (4 equiv), S8 (1.5
equiv), KF (6 equiv), CuI (0.2 equiv), L4 (0.2 equiv), TMEDA (2 equiv) in THF (4mL) at 60 °C for 3 h under a N2 atmosphere.

Scheme 3. The plausible reaction mechanism.
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(s), 14.2 (s). GC–MS (EI): Calculated for C12H9F3O2S [M]+: 274.0;
Found: 274.1.

(3 m) [29]: Pale yellow solid, 60 %. 1H NMR (400MHz, CDCl3) δ
8.92 (d, J=1.9 Hz, 1 H), 8.30 (s, 1 H), 8.09 (d, J=8.5 Hz, 1 H), 7.81 –
7.72 (m, 2 H), 7.61 – 7.55 (m, 1 H). 19F NMR (376MHz, CDCl3) δ
−43.2 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 151.6 (s), 147.3 (s), 139.8
(s), 131.0 (s), 129.5 (s), 128.0 (q, J =312.6 Hz), 127.8 (s), 127.7 (s),
126.9 (s), 115.7 (s), 98.7 (s), 70.5 (q, J =4.2 Hz). GC–MS (EI): Calcu-
lated for C12H6F3NS [M]+: 253.0; Found: 253.0.

(3n) [52]: Orange yellow oil, 70 %. 1H NMR (400MHz, CDCl3) δ
7.34 – 7.25 (m, 5 H), 3.55 (s, 2 H), 3.45 (s, 2 H), 2.35 (s, 3 H). 19F NMR
(376MHz, CDCl3) δ −44.0 (s, 3 F). 13C NMR (101MHz, CDCl3) δ 138.0
(s), 129.1 (s), 128.4 (s), 128.3 (q, J=311.8 Hz), 127.4(s), 99.0 (s), 63.1
(q, J =4.1 Hz), 60.0 (s), 45.9 (s), 41.9 (s). GC–MS (EI): Calculated for
C12H12F3NS [M]+: 259.1; Found: 259.1.

(3o) [49]: Yellow oil, 59 %. 1H NMR (400MHz, CDCl3) δ 7.35 –
7.29 (m, 2 H), 7.26 – 7.20 (m, 3 H), 2.88 (t, J =7.4 Hz, 2 H), 2.68 (t, J
=7.4 Hz, 2 H). 19F NMR (376MHz, CDCl3) δ −44.1 (s, 3 F). 13C NMR
(101MHz, CDCl3) δ 139.9 (s), 128.52 (s), 128.48 (q, J =311.5 Hz),
128.45 (s), 126.6 (s), 103.0 (s), 58.0 (q, J =4.3 Hz), 34.4 (s), 22.4 (s).
GC–MS (EI): Calculated for C11H9F3S [M]+: 230.0; [M-CF3]+: 161.0;
Found [M-CF3]+: 161.1.
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