

A: New Tools and Methods in Experiment and Theory

The Extraction Behavior of Acidic Phosphorus-Containing Compounds to Some Metal Ions: A Combination Research of Experimental and Theoretical

Ya-Qing Xiang, Xu Yao, Jin-Hong Lin, Xiao-Jian Ou,
Rong Li, Yu-Sheng Zhou, Donghai Yu, and Ji-Chang Xiao

J. Phys. Chem. A, Just Accepted Manuscript • DOI: 10.1021/acs.jpca.0c01594 • Publication Date (Web): 21 May 2020

Downloaded from pubs.acs.org on May 21, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

1
2
3
4
5 **The Extraction Behavior of Acidic Phosphorus-Containing Compounds**
6 **to Some Metal Ions: A Combination Research of Experimental and**
7 **Theoretical**
8

9
10
11 Ya-Qing Xiang^{a,b,†1}, Xu Yao^{a,†}, Jin-Hong Lin^b, Xiao-Jian Ou^c, Rong Li^a, Yu-Sheng Zhou^{a*}, Dong-Hai Yu^{b*}, Ji-
12 Chang Xiao^{b*}
13

14 ^a The Second Affiliated Hospital of University of South China, Hunan Province Cooperative Innovation
15 Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of tumor
16 microenvironment responsive drug research, Institute of Pharmacy and Pharmacology, University of
17 South China, Hengyang, Hunan, 421001, China.
18

19 ^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of
20 Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
21 China.
22

23 ^c Ltd. Laterite Leaching Project Team, Jinchuan Group, 98 Jinchuan Road, Jinchang, Gansu, 737104,
24 China.
25

26 **Abstract**
27
28
29

30 In order to provide feasible methods for the extraction of valuable metals from spent batteries
31 or low-grade primary ores, the extraction behavior of some representative acidic phosphorus-
32 containing compounds (APCC) as extractants is evaluated from the perspective of
33 experimental and theoretical investigations in this work. Aqueous solutions containing five
34 metal ions, Ca(II), Co(II), Mg(II), Mn(II), and Ni(II), were made to simulate leaching liquids, and
35 the extraction of these metals were investigated. A simplified calculated model was used to
36 evaluate the interaction between each extractant and metal ions. The calculation results
37 agree well with the experimental tests in trend. This work not only provides potential
38 extractants for the extraction of valuable metals from spent batteries or low-grade primary
39 ores, but also demonstrates the practicability of the simplified calculation model.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60 ^{†1} These authors contributed equally to this work.

1. Introduction

According to a report from Bloomberg New Energy Finance, the NCM (nickel, cobalt, manganese) ternary battery production capacity in 2019 reached 229 GWh, taking up 69% of the entire Li-ion battery production capacity, and the NCM production capacity keeps increasing rapidly. In the EV(Electric Vehicle) battery industry, NCM battery adoption rate constantly increases and is expected to increase from 45% in 2018 to 64% in 2025.¹ Namely, various hybrid electric, pure electric, and plug-in hybrid electric vehicles have occupied an increasing market in society, which directly results in the increasing demand for related metals and the urgent need for the treatment of solid waste of spent batteries. Addressing these issues would lay a solid foundation for the continuous developing of EV battery industry. However, the high-grade ores, such as copper-nickel sulphide, have been exhausting, and the low-grade ores, such as laterite, gradually become the one important resource.²⁻³ Under the context of sustainable development and environmental production,⁴ the cost of traditional treatment, transportation, and storage of solid waste are becoming expensive rapidly. Consequently, in the foreseeable future, the resources of metal raw materials used for batteries are mainly low-grade ores, and, especially, spent batteries.⁵ One of the common important characters of the low-grade ores and spent batteries is that both of them contain more calcium and magnesium, but less cobalt, nickel, manganese. Therefore, efficient separation of metals is of significant importance.⁶⁻⁷ The popular separation methods include resin ion exchange,⁸ electrochemical method,⁹⁻¹⁰ selective precipitation,¹¹⁻¹² bio-hydrometallurgy,¹³ solvent extraction,¹⁴⁻¹⁸ and the combination of some above methods.¹² Compared to other methods, solvent extraction is quite attractive due to simple and convenient operations, high efficiency, excellent selectivity and high capacity.

Solvent extraction in hydrometallurgy is an efficient method for recycling, separation, and purification of metals to obtain highly pure metals, such as rare-earth elements,¹⁹⁻²⁰ actinides,²¹⁻²² transition metals,^{18,23-24} alkali metals,¹⁴ and alkaline metals.²⁵⁻²⁶ In laboratory, the

solvent extraction of general metal ions includes the following steps, the preparation of aqueous metal-ion solutions and organic extractant solutions, the extraction of metal ions from the aqueous solutions by organic solutions, the measurement of the concentration of metal ions in both phases and the measurement of pH value in aqueous phase, and the final analysis of the experimental data.²⁷⁻²⁸ The solvent extraction strategy has found widespread application in the recycling of spent batteries and the refining of low-grade ores.⁷ For instance, a recycling approach containing mechanical pre-treatment and solvent extraction operations developed by Granata et al., which could accomplish the European Guideline 2006/66/EC for recycling of nickel metal hydride, lithium ion, and primary lithium batteries.¹⁷ And, the recovery of manganese from a solution containing cobalt, nickel, and lithium, leached from spent lithium-ion battery ternary cathodic material, was achieved by Joo et al.²⁹ More related researches on the extraction and separation of metal ions have been collected in recent reviews.^{16,27,30} These reports demonstrate that the solvent extraction is a potential efficient approach to solve the separation problem.

In the solvent extraction process, the selected extractant is very important. It determines almost all extraction operation parameters, such as acidity, concentration, stages, stripping, etc., and also decides the total efficiency of the extraction process.^{16,29,31} As versatile extractants, acidic phosphorus-containing compounds (APCC) have been widely used in hydrometallurgy.^{28,32-33} Some commercial available APCC extractants include bis(2-ethylhexyl) phosphate (P204), 2-ethylhexyl (2-ethylhexyl)phosphonate (P507), bis(2-ethylhexyl)phosphinic acid (P227), bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272, or C272).^{18,34-40} In order to obtain efficient extractants, extensive studies on the design and QSPR (quantitative structure-property relationship) of APCC have been performed. Yuan et al. showed that the Hammett constants, the Taft constants, the number of infrared spectroscopies, acidic dissociation constants, and electronic density (calculated with Hückel molecular orbital) on oxygen are directly related to the extraction abilities of APCC.⁴¹⁻⁴³ A novel

1
2
3 APCC extractant, USTB-2, designed by Wang et al., was found to be a superior extractant,
4 compared with the commercial available Cyanex 272, for the extraction and separation of
5 rare-earths.⁴⁴ Additionally, the extraction of valuable metals from spent batteries or low-
6 grade ores by APCC has also been explored.^{17,29,31} For instance, Ichlas et al. reported the
7 Cyanex 272 could directly extract the nickel and cobalt from the nitric acid leaching solution
8 of laterite ores.¹⁸ These reports indicated that the APCC have enormous potential application
9 in extraction of valuable metals from spent batteries or low-grade ores.
10
11

12 Although a number of APCC have been studied in academic areas and used in
13 industrials,^{33,45} the extraction and separation properties of various APCC have not been
14 investigated systematically. Furthermore, according to the “9S rule” proposed by professor
15 Yuan,⁴⁶ the popular extractants usually exhibit some inferior characteristics, such as low
16 capacity, low selectivity, and high stripping acidity. Therefore, it is still highly desirable to
17 develop more efficient extractants. We have previously developed an approach to evaluate
18 the QSPR for the separation and extraction of several trivalent lanthanide ions by APCC from
19 the theoretical and experimental point of view,⁴⁷⁻⁴⁸ various APCC were synthesized and
20 characterized, and their extraction and separation properties under different condition were
21 also tested. And the first-stability constants were used to simulate the overall extraction
22 equilibrium constants in trend. Compared to the completely coordinated model by using
23 excessive extractants,⁴⁹ our model by using 1 equiv of extractant can save the computer
24 resource significantly, which is favorable for the calculation of the interaction between
25 extractants and metal ions with a great reliability. Additionally, the varied conformations in
26 the model would not be a significant calculation issue because only one-molecule residue of
27 the extractant existed surrounding the metal ions.^{30,50}
28
29

30 Since APCC may have great potential in the extraction and separation of valuable metal
31 ions from spent batteries and low-grade ores,²⁷ in this work we continuously focus on the
32 extraction properties of some representative APCC for the extraction and separation of five
33

1
2
3 metal ions, Ca(II), Co(II), Mg(II), Mn(II), and Ni(II). Some other metal ions, including Al(III), Cu(II),
4 Fe(III), Li(I) and Na(I) are also common components of leaching liquid obtained from spent
5 batteries or low-grade ores.^{7,51-54} Al(III), Cu(II) and Fe(III) ions can be easily removed by proper
6 pretreatment before the extraction process. The Fe(III) ion may be removed by precipitation,⁵
7 the Al(III) ion can be excluded via the formation of AlO_2^- , and the Cu(II) ion can be extracted
8 with Acorga M5640.⁵⁵ Usually, Li(I) and Na(I) ions would stay in the aqueous solution when
9 extracted by APCC. Based on these facts, only the above five metal ions are considered here.
10
11 Firstly, the extraction behavior of six APCC, P1C6, P127, P118, P208, P227, and P2361 to the
12 above five metal ions was investigated, and the first-stability constants were also computed
13 in order to examine the reliability of the simplified model on the evaluation and prediction of
14 the extraction and separation properties of the six APCC. Secondly, the extraction properties
15 of two commercially available extractants, Cyanex 272 and P507, for the extraction and
16 separation of the above five metal ions is predicted by the simplified calculated model, and
17 then the prediction results were verified by experimental evidence. This work provides
18 potential extractants for the separation of Ca(II), Co(II), Mg(II), Mn(II), and Ni(II) metal ions,
19 explains general principles of the interaction between extractants and metal ions, and offers
20 an approach for the prediction of extraction efficiency.
21
22

42 2. Experiment and computation sections

43

44 2.1 Experimental details

45

46 Materials

47

52 The APCC, P1C6, P127, P118, P208, P227, and P2361 (di(cyclohexyl)phosphinic acid, di(1-
53 ethylhexyl)phosphinic acid, di(1-methylheptyl)phosphinic acid, di(2-methylheptyl)phosphinic
54 acid, di(2-ethylhexyl)phosphinic acid, and di(2-isopropylpentyl)phosphinic acid, respectively),
55 were synthesized according to our previous reports.⁴⁷⁻⁴⁸ $\text{NaH}_2\text{PO}_2 \cdot \text{H}_2\text{O}$ (20 mmol), acetic acid
56
57
58
59
60

(20 mmol), alkene (42 mmol), di-*t*-butyl peroxide (DTBP; 8 mmol), and dimethylformamide (10 mL) were placed in a 50-mL autoclave. The mixture was stirred at 130 °C for 10 h. The solvent was removed under reduced pressure. The residue was dissolved in water, acidified with HCl, and extracted with diethyl ether. The ether layer was washed with water and the solvent was evaporated. Into the residue was added NaOH (1 mol/L) until pH = 7, and diethyl ether was added to dissolve some organic impurities. The residue was heated under vacuum at 100 °C to give APCC in about 87% yield. The Cyanex 272 and P507 were purchased from AoDa chemical without further purification. Other reagents used in this work were analytical pure.

Extraction process

In order to determine the influence of operation conditions on the extraction and separation efficiency, we have conducted some extraction experiments under different conditions, such as varying diluents, extractant concentrations, extraction temperatures and shaking time. In all experiments, aqueous sulfate solutions of the metal ions (Ca(II), Co(II), Mg(II), Mn(II), and Ni(II)) were prepared by diluting metal sulphates to 0.002 mol/L with deionized water. Sodium sulfate was used to maintain the ionic strength in aqueous phase. An APCC solution and an aqueous metal sulfate solution (equal volume with APCC solution) were mixed together and the resulting mixture was kept shaking at 300 rpm in a separating funnel fixed on a thermostatic oscillator. The concentrations of metal ions in each phase were analyzed by ICP (SPECTRO ARCOSFHS12), and the pH values of two aqueous were measured by pH meter (PHS-3E).

2.2 Computational details

Model

As reported in literature, the extraction chemical equation of M^{n+} (M^{n+} is Ni(II), Co(II), Mn(II), Ca(II), and Mg(II)) with APCC (HA is P1C6, P127, P118, P208, P227, and P2361) could be represented as:^{15,29,56}

where, the ΔG_{EX} and K_{EX} refer to the difference of Gibbs free energy and the corresponding extraction equilibrium constants for the extraction chemical reaction, respectively. H_2A_2 refers to the dimer of HA. According to various reports,^{28,57-58} these compounds prefer to dimerize in diluent solutions.^{57,59} The subscripts, (o) and (aq) refer to organic and aqueous phase, respectively. Because $M(HA_2)_n$ contains over two hundred atoms and a large number of different conformations may exist, it is not easy to optimize their molecular structures accurately.⁴⁹ Namely, the ΔG_{EX} and K_{EX} are difficult to calculate. Consequently, in previous reports,⁴⁷⁻⁴⁸ a simplified chemical reaction,

was proposed to qualitatively estimate the ΔG_{EX} and K_{EX} . Where, the $\Delta G_{EX,1}$ and $K_{EX,1}$ refers to the difference of Gibbs free energy when the first ligand coordinated on the metal center in the extraction process, and the $K_{EX,1}$ refers to the corresponding first equilibrium constant. As indicated in our previous reports, the $\Delta G_{EX,1}$ and $K_{EX,1}$ calculated from density functional theory share the same trend with ΔG_{EX} and K_{EX} tested from the experimental approach.⁴⁷⁻⁴⁸ Therefore, the $\Delta G_{EX,1}$ is also applied to estimate the ΔG_{EX} too in trend in this work, as shown as Figure 1. The distorted conformation was adopted for the ligand in $[Co(H_2O)_5A]^{+}_{(o)}$ in order to reflect the steric effect of alkyl group in extractants, especially the α - or β -substituted alkyl group.⁴⁷⁻

⁴⁸ The $[M(H_2O)_6]^{2+}$ was used to represent the forms of aqueous metal ions, Ni(II), Co(II), Mn(II), and Mg(II).⁶⁰⁻⁶¹ In the case of Ca(II), $[Ca(H_2O)_7]^{2+}$ was found to be the hydrated form.⁶²⁻⁶³ The dimeric forms were adopted for all APCC.^{48,59} Tetramer of water and hydron ion hydrated by

1
2
3 four molecules of water were adopted according to literatures.⁶⁴⁻⁶⁷ The extraction process is
4
5 replacing the coordinated waters by the anion of extractant.⁶⁸
6
7
8

9 Calculation

10

11 All geometries were fully optimized without any restriction at the DFT (density functional
12 theory) B3PW91 theory level,⁶⁹ and the vibrational frequencies were calculated to ensure all
13 structures were located on the minimal point of potential surface. The solvent effect was
14 included by using the SMD solvation model,⁷⁰ considering water and *n*-dodecane as the
15 aqueous and organic phases, respectively, and using a single-point calculation based on the
16 optimized structures. The conformations with the lowest energies were used if multiple
17 possible conformations existed. In these calculations, the 6-31+G*⁷¹ basis set was used for C,
18 H, O, P, and Mg, and the LANL2DZ was used for Ni, Co, Mn, and Ca.⁷² All calculations were
19 performed in Gaussian 09 software package.⁷³
20
21
22
23
24
25
26
27
28
29
30
31
32

3. Results and discussion

36 3.1 The extraction efficiency under different operation conditions

37
38
39

40 The influence of operation conditions, such as varying diluents, extractant
41 concentrations, extraction temperatures and shaking times, on the extraction efficiency has
42 been evaluated initially by using the P227 as an extractant, the results are collected in Table
43
44 1.
45
46

47 As listed in the Table 1, the pH value at 50% extraction rate (pH⁵⁰) for the extraction of
48 the five metal ions by P227 under different operating conditions are collected. Three
49 concentrations of P227, 0.05, 0.20, and 0.50 mol/L were considered. The pH⁵⁰ values clearly
50 indicated that the organic phase with higher concentration of extractants can extract metal
51 ions with more efficiency^{28,57} and would lead to lower pH⁵⁰. The concentration of extraction
52 almost did not affect the order of pH⁵⁰, except Ca(II) and Mg(II). We also considered the
53
54
55
56
57
58
59
60

1
2
3 temperatures of 10, 25, and 40 °C, the shaking times of 5, 15, 30, 60 min, and the use of *n*-
4 dodecane, sulfonated kerosene, toluene, and E100 (a commercial solvent, a mixture of alkane)
5 as diluents. The pH⁵⁰ values were slightly affected by the above operating conditions. The
6 shorter shaking times and higher temperatures led to higher pH⁵⁰, but the type of diluents had
7 little influence on the pH⁵⁰ values. However, the order of pH⁵⁰ were almost not changed,
8 except the Ca(II) and Mg(II). These facts demonstrated that the operation conditions can
9 impact the extractability of organic phases, but has little influence on the separability of the
10 organic phases. The separability is a key issue in extracting metals from low-grade primary
11 ores or spent batteries. And in the following sections, we concentrated on the separability
12 under specific conditions, i.e., 0.20 mol/L concentration of APCC in *n*-dodecane, shaking time
13 of 30 min, and operating temperature of 25 °C.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

3.2 The extraction behavior observed by experimental tests

29
30
31 In order to present the extraction and separation properties of APCC, P1C6, P127, P118,
32 P208, P227, and P2361 for the extraction of Ni(II), Co(II), Mn(II), Ca(II), and Mg(II)metal ions,
33 the extraction rates at different acidity were tested as declared in 2.1 section, the plots of
34 extraction rates versus equilibrium aqueous pH values were plotted in Figure 2, and pH⁵⁰ (the
35 pH values when extraction rate was 50%) were collected in Table 2.
36
37
38
39
40
41
42
43

44 As shown in Figure 2, the extraction rates of each metal ion by each APCC increased with
45 extraction equilibrium pH value increasing when no precipitate was formed. This is a general
46 phenomenon observed frequently in acidic extraction system.^{16,29,31,45} However, these six
47 APCC showed largely different extraction behaviors. Firstly, the compounds containing bulkier
48 alkyl groups (such as P1C6 and P127, Figure 2a and 2b) led to the formation of metal-complex
49 precipitates at lower pH. Low extraction rate was observed by using these compounds as
50 extractants, especially for the extraction of Ni(II) and Ca(II). The extraction rate of Ni(II) and
51 Ca(II) by P1C6 was lower than 10% at pH < 5 and emulsions were formed at pH > 5. In contrast,
52
53
54
55
56
57
58
59
60

P118 and P208, containing smaller substituents, showed superior extraction properties and even at pH > 6.5 no emulsion or precipitation was formed (Figure 2c and 2d). This agree well with Guimarães' reports that the crud would be formed at pH \approx 6.³¹ The bulky-substituent effects could be ascribed to some facts. Firstly, the steric hindrance reduces the coordination ability of the phosphoryl oxygen. Without the coordination to the extractants, metal ions may easily undergo hydrolysis to form precipitations. Secondly, the compounds containing larger substituents exhibited lower solubility, which results in lower saturation capacity and would easily lead to the formation of emulsion.⁷⁴⁻⁷⁸

In a solution containing the five metal ions, it is important to determine the separation ability of each APCC. As shown in Figure 2, the separation ability of each APCC is reflected by the distance between different lines under the same pH-value conditions. The larger the distance is, the better the separation ability is. The six APCC have very different separation ability. For instance, P127(Figure 2b), could separate Mn(II) and Co(II) from Mg(II), Ca(II), and Ni(II) at pH=4-5, but P2361(Figure 2f) could not. Similarity, P118 (Figure 2c) could separate Ni(II) from other ions at pH=5. Although all of the APCC have the same core structure, $R_2P(O)OH$ (R = alkyl group), Figures 2a-2f clearly show that slight modifications of the alkyl substituents led to significant changes in the extraction priority. The positions of the blue and black lines, reflecting the extraction rates of Mg(II) and Ca(II), respectively, changed significantly in the six pictures, suggesting that the presence of Mg(II) and Ca(II) ions would increase the difficulty in the separation of Ni(II), Co(II), and Mn(II) ions.⁷⁹

In order to reveal the metal-ion extraction priority order, the pH⁵⁰ were collected in Table 2. As listed in Table 2, the values of pH⁵⁰ are affected not only by the acidic dissociation constants (pK_a) of extractants, but also by the nature of metal ions, especial their hydrolysis characteristics.⁸⁰ Usually, extractants with lower pK_a value would exhibit stronger extractability.^{28,37} Although pK_a (5.36) of P1C6 is lower than that of P2361 (pK_a = 5.80), their

pH⁵⁰ values for the extraction of Ca(II) are 5.51 and 4.57, respectively, meaning that P2361 shows stronger extractability. A similar case was found for the extraction of Mn(II) by these two APCC. Obviously, both extractant and metal ions together determine the order of pH⁵⁰. In other words, neither of these two factors can solely determine the extraction and separation properties. Therefore, the extraction of the same metal ion from different mixtures may require the use of a different extractant. For the separation of a metal-ion mixture by an extractant, the larger the difference between pH⁵⁰ is, the higher efficiency the separation can achieve. As shown in Table 2, the pH⁵⁰ of Co(II) and Ni(II) are 4.15 and 6.73, respectively, by using P208 as the extractant. their difference between these two pH⁵⁰ value is 2.58, and the difference is 1.48 by using P2361 as the extractant. Clearly, P208 is more efficient than P2361 for the separation of Co(II) from Ni(II). Based on the pH⁵⁰ listed in Table 2, it is easy to choose an appropriate extractant for the separation of selected ion mixtures.

3.3 Evaluating the extraction behavior from computational calculations.

It is clear that the alkyl substituents are important in metal ion extraction.^{47-48,81} In order to deeply understand the interaction between metal ions and extractants and to explain the influence of alkyl substituents, a simplified extraction model was calculated with the density functional theory as described in section 2.2. The results were listed in Table 3.

As shown in Table 3, $\Delta G_{EX,1}$ reflects the extraction priority order of different metal ions. By using the same APCC, the larger the difference of $\Delta G_{EX,1}$ is, the higher efficiency the separation process can achieve. Furthermore, the relative difference of $\Delta G_{EX,1}$ between two ions by using the same APCC also agrees well with the relative difference of pH⁵⁰. These results indicated that our previous simplified calculation model proposed for the extraction of lanthanide ions could be applied to evaluate the extraction of other metal ions.⁴⁷⁻⁴⁸ Moreover, the same conclusion could be drawn that the P208 is more efficient than P227 for the

separation of Ni(II) from the mixture of Co(II) and Mn(II) ions, as $\Delta G_{\text{EX},1}$ between Ni(II) and Co(II)/Mn(II) is larger by using P208 than that by using P2361.

With this simplified model in hand, further calculation was performed for two commercial extractants, C272 and P507, and the results were also collected in the bottom layer of Table 3. The prediction of separation ability of C272 and P507 for the separation Ni(II) and Co(II) agree well with the experimental results obtained by Sarangi et al.²⁸ Our calculation results indicated that the separation order is C272 > P507 > P227, and the differences of $\Delta G_{\text{EX},1}$ between Ni(II) and Co(II) are 25.95, 18.70, and 16.75 $\text{kJ}\cdot\text{mol}^{-1}$ for C272, P507, and P227 respectively.

Table 2 and 3 provides much valuable information for the extraction of some metal ions by APCC. For instance, some APCC (P208, P1C6, etc.) have higher selectivity than the commercial extractants, C272 and P507, for the separation of Co(II)/Ni(II). Both Table 2 and 3 indicated that the alkyl substituents are the critical factors to determine the extraction and separation behaviors of APCC.⁴⁷⁻⁴⁸ In fact, the alkyl substituents are the only differences in the structures of these APCC, and the slight differences result in the significantly different extraction behaviors, especially the separation abilities. The extraction characteristics are partially determined by the acidity of extractants, but acidity is not an only factor according to Liu's opinion, acidity is a local property of molecules.⁸² Since the conformations of alkyl substituents has little influence on the inductive effects of coordination atoms in extractants, the conformations of alkyl substituents would have little effect on the acidity of extractants, meaning that the interaction strength between metal ions and coordination center would not be influenced by the conformations of alkyl groups. But the orientations of alkyl chains could affect the coordination of other ligands, and thus the distorted conformations were used in the simplified calculation model. These results indicated that the simplified model could successfully simulate complicated complexes if proper distorted conformations are used.

4. Conclusion

In this work, the extraction behavior of several APCC (P1C6, P127, P118, P208, P227, and P2361) for the extraction of metal ions (Ni(II), Co(II), Mn(II), Ca(II), and Mg(II)) were revealed from the perspective of experimental and theoretical investigations. The experimental results indicated that the APCC have great potential for the extraction of the above metal ions from leaching liquids obtained from spent batteries or primary ores, some of them (e.g. P208, P1C6) have superior selectivity than commercial extractants (P507, C272, etc.) for the extraction of some metal ions, such as Co(II) and Ni(II), and the separability is not sensitive to the operation conditions. A simplified calculation model with only one equiv of extractant considered was used to understand the interaction between extractants and metal ions from the theoretical perspective. The consistence of computational calculation with experimental results indicated that the simplified model could provide a convenient approach for the prediction of extraction efficiency.

Author Information

Corresponding Authors

*E-mail: yszhou08@126.com.

*E-mail: ydonghai@sioc.ac.cn.

*E-mail: jchxiao@sioc.ac.cn.

ORCID

Dong-Hai Yu: 0000-0002-3119-7999

Ji-Chang Xiao: 0000-0001-8881-1796

Notes

The authors declare no competing financial interest.

Acknowledgments

This work was supported by the National Natural Science Foundation (21421002, 21672242, 21971252, 21991122), Key Research Program of Frontier Sciences (CAS)

(QYZDJSSW-SLH049), Youth Innovation Promotion Association CAS (2019256), the Fujian Institute of Innovation, Chinese Academy of Sciences (FJCXY18040102), the Hunan Provincial Innovation Foundation for Postgraduate(193YXC024).

References

- (1) Jürgens, J. THIS IS WHY NCM IS THE PREFERABLE CATHODE MATERIAL FOR LI-ION BATTERIES. <https://lghomebatteryblog.eu/en/this-is-why-ncm-is-the-preferable-cathode-material-for-li-ion-batteries/>.
- (2) Warner, A. E. M.; Díaz, C. M.; Dalvi, A. D.; Mackey, P. J.; Tarasov, A. V. JOM world nonferrous smelter survey, part III: Nickel: Laterite. *JOM* **2006**, *58*, 11-20.
- (3) Warner, A. E. M.; Díaz, C. M.; Dalvi, A. D.; Mackey, P. J.; Tarasov, A. V.; Jones, R. T. JOM world nonferrous smelter survey part IV: Nickel: Sulfide. *JOM* **2007**, *59*, 58-72.
- (4) Lélé, S. M. Sustainable development: A critical review. *World Devel.* **1991**, *19*, 607-621.
- (5) Chen, X.; Xu, B.; Zhou, T.; Liu, D.; Hu, H.; Fan, S. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. *Sep. Purif. Technol.* **2015**, *144*, 197-205.
- (6) Chen, X.; Fan, B.; Xu, L.; Zhou, T.; Kong, J. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. *J. Clean. Prod.* **2016**, *112*, 3562-3570.
- (7) Liu, C.; Lin, J.; Cao, H.; Zhang, Y.; Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. *J. Clean. Prod.* **2019**, *228*, 801-813.
- (8) Badawy, S. M.; Nayl, A. A.; El Khashab, R. A.; El-Khateeb, M. A. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. *J. Mater. Cycles Waste Manage.* **2014**, *16*, 739-746.
- (9) Lupi, C.; Pasquali, M.; Dell'era, A. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. *Waste Manag.* **2005**, *25*, 215-220.
- (10) Oriňáková, R.; Turoňová, A.; Kladeková, D.; Gálová, M.; Smith, R. M. Recent developments in the electrodeposition of nickel and some nickel-based alloys. *J. Appl. Electrochem.* **2006**, *36*, 957-972.
- (11) Wang, R.-C.; Lin, Y.-C.; Wu, S.-H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. *Hydrometallurgy* **2009**, *99*, 194-201.
- (12) Provazi, K.; Campos, B. A.; Espinosa, D. C. R.; Tenório, J. A. S. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. *Waste Manag.* **2011**, *31*, 59-64.
- (13) Mishra, D.; Kim, D.-J.; Ralph, D. E.; Ahn, J.-G.; Rhee, Y.-H. Bioleaching of metals from spent lithium ion secondary batteries using acidithiobacillus ferrooxidans. *Waste Manag.* **2008**, *28*, 333-338.
- (14) Nan, J.; Han, D.; Zuo, X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. *J. Power Sources* **2005**, *152*, 278-284.
- (15) Reddy, B. R.; Priya, D. N. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel-cadmium batteries using Cyanex 923 and 272. *J. Power Sources* **2006**, *161*, 1428-1434.
- (16) Cheng, C. Y.; Barnard, K. R.; Zhang, W.; Robinson, D. J. Synergistic solvent extraction of nickel and cobalt: A review of recent developments. *Solvent Extr. Ion Exch.* **2011**, *29*, 719-754.
- (17) Granata, G.; Pagnanelli, F.; Moscardini, E.; Takacova, Z.; Havlik, T.; Toro, L. Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European guidelines by optimizing mechanical pre-treatment and solvent extraction operations. *J. Power Sources* **2012**, *212*, 205-211.

(18) Ichlas, Z. T.; Ibana, D. C. Process development for the direct solvent extraction of nickel and cobalt from nitrate solution: aluminum, cobalt, and nickel separation using Cyanex 272. *Int. J. Miner. Metall. Mater.* **2017**, *24*, 37-46.

(19) Li, D. A review on yttrium solvent extraction chemistry and separation process. *J. Rare Earth.* **2017**, *35*, 107-119.

(20) El-Nadi, Y. A.; El-Hefny, N. E.; Aly, H. F. Solvent extraction and recovery of Y(III) and Yb(III) from fluorspar mineral. *Int. J. Miner. Metall. Mater.* **2013**, *20*, 713-719.

(21) Carboni, M.; Abney, C. W.; Liu, S.; Lin, W. Highly porous and stable metal-organic frameworks for uranium extraction. *Chem. Sci.* **2013**, *4*, 2396-2402.

(22) Verma, P. K.; Kumari, N.; Pathak, P. N.; Sadhu, B.; Sundararajan, M.; Aswal, V. K.; Mohapatra, P. K. Investigations on preferential Pu(IV) extraction over U(VI) by N,N-Dihexyloctanamide versus tri-n-butyl phosphate: Evidence through small angle neutron scattering and DFT studies. *J. Phys. Chem. A* **2014**, *118*, 3996-4004.

(23) Vander Hoogerstraete, T.; Wellens, S.; Verachtert, K.; Binnemans, K. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. *Green Chem.* **2013**, *15*, 919-927.

(24) Koladkar, D.; Dhadke, P. Cobalt–nickel separation: The extraction of cobalt(ii) and nickel(ii) with bis(2-ethylhexyl) phosphinic acid (pia-8) in toluene. *Solvent Extr. Ion Exch.* **2001**, *19*, 1059-1071.

(25) Naik, M. T.; Dhadke, P. M. LIQUID - LIQUID EXTRACTION OF GALLIUM(m) FROM ACIDIC NITRATE MEDIA WITH BIS(2-ETHYLHEXYL) PHOSPHINIC ACID IN TOLUENE. *Solvent Extr. Ion Exch.* **1999**, *17*, 1295-1308.

(26) Shozo, Y.; Kazutomo, T.; Mitsuo, O. Metal-ion complexation of noncyclic poly(oxyethylene) derivatives. I. Solvent extraction of alkali and alkaline earth metal thiocyanates and iodides. *Bull. Chem. Soc. Jpn.* **1977**, *50*, 1386-1390.

(27) Xie, F.; Zhang, T. A.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. *Miner. Eng.* **2014**, *56*, 10-28.

(28) Sarangi, K.; Reddy, B. R.; Das, R. P. Extraction studies of cobalt (II) and nickel (II) from chloride solutions using Na-Cyanex 272.: Separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures. *Hydrometallurgy* **1999**, *52*, 253-265.

(29) Joo, S.-H.; Shin, D.; Oh, C.; Wang, J.-P.; Shin, S. M. Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material. *J. Power Sources* **2016**, *305*, 175-181.

(30) Wilson, A. M.; Bailey, P. J.; Tasker, P. A.; Turkington, J. R.; Grant, R. A.; Love, J. B. Solvent extraction: the coordination chemistry behind extractive metallurgy. *Chem. Soc. Rev.* **2014**, *43*, 123-134.

(31) Guimarães, A. S.; Mansur, M. B. Selection of a synergistic solvent extraction system to remove calcium and magnesium from concentrated nickel sulfate solutions. *Hydrometallurgy* **2018**, *175*, 250-256.

(32) Yu, D. H.; Du, R. B.; Xiao, J. C. pK_a prediction for acidic phosphorus-containing compounds using multiple linear regression with computational descriptors. *J. Comput. Chem.* **2016**, *37*, 1668-1671.

(33) Flett, D. S. Solvent extraction in hydrometallurgy: the role of organophosphorus extractants. *J. Organomet. Chem.* **2005**, *690*, 2426-2438.

(34) Špadina, M.; Bohinc, K.; Zemb, T.; Dufrêche, J.-F. Colloidal model for the prediction of the extraction of rare earths assisted by the acidic extractant. *Langmuir* **2019**, *35*, 3215-3230.

(35) Zhang, F.; Wu, W.; Bian, X.; Zeng, W. Synergistic extraction and separation of lanthanum (III) and cerium (III) using a mixture of 2-ethylhexylphosphonic mono-2-ethylhexyl ester and di-2-ethylhexyl phosphoric acid in the presence of two complexing agents containing lactic acid and citric acid. *Hydrometallurgy* **2014**, *149*, 238-243.

(36) Liao, C.-f.; Jiao, Y.-f.; Liang, Y.; Jiang, P.-g.; Nie, H.-p. Adsorption-extraction mechanism of heavy rare earth by Cyanex272-P507 impregnated resin. *Trans. Nonferrous Met. Soc. China* **2010**, *20*, 1511-1516.

(37) Zhang, C.; Wang, L.; Huang, X.; Dong, J.; Long, Z.; Zhang, Y. Yttrium extraction from chloride solution with a synergistic system of 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester and bis(2,4,4-trimethylpentyl) phosphinic acid. *Hydrometallurgy* **2014**, *147–148*, 7-12.

(38) Matsunaga, H.; Ismail, A. A.; Wakui, Y.; Yokoyama, T. Extraction of rare earth elements with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate impregnated resins having different morphology and reagent content. *React. Funct. Polym.* **2001**, *49*, 189-195.

(39) Wu, D.; Zhang, Q.; Bao, B. Synergistic effects in extraction and separation of praseodymium(III) and neodymium(III) with 8-hydroxyquinoline in the presence of 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. *Ind. Eng. Chem. Res.* **2007**, *46*, 6320-6325.

(40) Jing, Y.; Chen, J.; Su, W.; Chen, L.; Liu, Y.; Li, D. Deep insights into the solution and interface behaviors in heavy rare earth extraction: A molecular dynamics study. *J. Mol. Liq.* **2019**, *296*, 111790.

(41) Yuan, C.-Y.; Lu, X.-Y.; Ma, H.-L.; Wang, G.-L.; Shen, D.-Z.; Wu, F.-B.; Qin, X.-Q.; Xie, J.-F. Synthesis of monoocetyl alkylphosphonates and structure-reactivity studies on their extraction of rare earths. *Acta. Chim. Sin.* **1981**, *39*, 881-895.

(42) Yuan, C.; Long, H.; Ma, E.; Cheng, W.; Yan, X. Studies on the synthesis of octyl phosphonic acid monoocetyl esters and their structure-reactivity relationship in lanthanide extraction. *J. Chin. Soc. Rare. Earth.* **1985**, *3*, 13-19.

(43) Yuan, C.-Y.; Zhou, C.-M.; Chen, C.-C. Application of HMO method in structure-reactivity studies of organic extractants. *Acta. Chim. Sin.* **1981**, *39*, 699-710.

(44) Wang, J.; Liu, X.; Fu, J.; Xie, M.; Huang, G.; Wang, H. Novel extractant (2,4-dimethylheptyl)(2,4,4'-trimethylpentyl)phosphinic acid (USTB-2) for rare earths extraction and separation from chloride media. *Sep. Purif. Technol.* **2019**, *209*, 789-799.

(45) Sole, K. C.; Hiskey, J. B. Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants. *Hydrometallurgy* **1992**, *30*, 345-365.

(46) Yu, D.; Lu, R.; Du, R.; Xiao, J. The rare-earth extractant of one in million. <http://www.cs-re.org.cn/popular/a1223.html>.

(47) Du, R.-B.; An, H.; Zhang, S.; Yu, D.; Xiao, J.-C. Microwave-assisted synthesis of dialkylphosphinic acids and a structure-reactivity study in rare earth metal extraction. *RSC Adv.* **2015**, *5*, 104258-104262.

(48) Du, R.; Yu, D.; An, H.; Zhang, S.; Lu, R.; Zhao, G.; Xiao, J.-C. α, β -Substituent effect of dialkylphosphinic acids on lanthanide extraction. *RSC Adv.* **2016**, *6*, 56004-56008.

(49) Cao, X.; Zhang, J.; Weissmann, D.; Dolg, M.; Chen, X. Accurate quantum chemical modelling of the separation of Eu(3+) from Am(3+)/Cm(3+) by liquid-liquid extraction with Cyanex272. *Phys. Chem. Chem. Phys.* **2015**, *17*, 20605-20616.

(50) Lommelen, R.; Vander Hoogerstraete, T.; Onghena, B.; Billard, I.; Binnemans, K. Model for metal extraction from chloride media with basic extractants: A coordination chemistry approach. *Inorg. Chem.* **2019**, *58*, 12289-12301.

(51) Meshram, P.; Pandey, B. D.; Mankhand, T. R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. *Waste Manag.* **2015**, *45*, 306-313.

(52) Barik, S. P.; Prabaharan, G.; Kumar, L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. *J. Clean. Prod.* **2017**, *147*, 37-43.

(53) Luo, W.; Feng, Q.; Ou, L.; Zhang, G.; Chen, Y. Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure. *Miner. Eng.* **2010**, *23*, 458-462.

(54) Whittington, B. I.; Muir, D. Pressure acid leaching of nickel laterites: A review. *Miner. Process. Extr. Metall. Rev.* **2000**, *21*, 527-599.

(55) Nan, J.; Han, D.; Yang, M.; Cui, M.; Hou, X. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. *Hydrometallurgy* **2006**, *84*, 75-80.

(56) Swain, B.; Jeong, J.; Lee, J.-c.; Lee, G.-H. Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: A mathematical model correlation to predict optimum operational conditions. *Sep. Purif. Technol.* **2008**, *63*, 360-369.

(57) Biswas, R. K.; Begum, D. A. Solvent extraction of tetravalent titanium from chloride solution by di-2-ethylhexyl phosphoric acid in kerosene. *Hydrometallurgy* **1998**, *49*, 263-274.

(58) Yang, Z.; Meng, X.; Zhao, D.; Gong, L. Theoretical study on hydronium ion clusters by ab initio calculation and ABEEM/MM model. *Acta. Chim. Sin.* **2009**, *67*, 2074-2080.

(59) Jing, Y.; Chen, J.; Chen, L.; Su, W.; Liu, Y.; Li, D. Extraction behaviors of heavy rare earths with organophosphoric extractants: The contribution of extractant dimer dissociation, acid ionization, and complexation. A quantum chemistry study. *J. Phys. Chem. A* **2017**, *121*, 2531-2543.

(60) Kallies, B.; Meier, R. Electronic structure of 3d $[M(H_2O)_6]^{3+}$ ions from Sc^{III} to Fe^{III}: A quantum mechanical study based on DFT computations and natural nond orbital analyses. *Inorg. Chem.* **2001**, *40*, 3101-3112.

(61) D'angelo, P.; Barone, V.; Chillemi, G.; Sanna, N.; Meyer-Klaucke, W.; Pavel, N. V. Hydrogen and higher shell contributions in Zn²⁺, Ni²⁺, and Co²⁺ aqueous solutions: An X-ray absorption fine structure and molecular dynamics study. *J. Am. Chem. Soc.* **2002**, *124*, 1958-1967.

(62) Dang, L. X.; Schenter, G. K.; Glezakou, V.-A.; Fulton, J. L. Molecular simulation analysis and X-ray absorption measurement of Ca²⁺, K⁺ and Cl⁻ ions in solution. *J. Phys. Chem. B* **2006**, *110*, 23644-23654.

(63) Mähler, J.; Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. *Inorg. Chem.* **2012**, *51*, 425-438.

(64) Headrick, J. M.; Diken, E. G.; Walters, R. S.; Hammer, N. I.; Christie, R. A.; Cui, J.; Myshakin, E. M.; Duncan, M. A.; Johnson, M. A.; Jordan, K. D. Spectral signatures of hydrated proton vibrations in water clusters. *Science* **2005**, *308*, 1765-1769.

(65) Liu, X.; Lu, X.; Meijer, E. J.; Wang, R.; Zhou, H. Acid dissociation mechanisms of Si(OH)₄ and Al(H₂O)₆³⁺ in aqueous solution. *Geochim. Cosmochim. Acta* **2010**, *74*, 510-516.

(66) Wander, M. C. F.; Rustad, J. R.; Casey, W. H. Influence of explicit hydration waters in calculating the hydrolysis constants for geochemically relevant metals. *J. Phys. Chem. A* **2010**, *114*, 1917-1925.

(67) Hodges, M. P.; Wales, D. J. Global minima of protonated water clusters. *Chem. Phys. Lett.* **2000**, *324*, 279-288.

(68) Gaikwad, A. G.; Damodaran, A. D. Solvent extraction studies of holmium with acidic extractants. *Sep. Sci. Technol.* **1993**, *28*, 1019-1030.

(69) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. *Phys. Rev. B* **1992**, *46*, 6671-6687.

(70) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.

(71) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6-31G* basis set for third-row atoms. *J. Comput. Chem.* **2001**, *22*, 976-984.

(72) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. *J. Chem. Phys.* **1985**, *82*, 299-310.

(73) Frisch, M. e., Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford, CT: 2013.

(74) Yu, D.; Du, R.; Zhang, S.; Lu, R.; An, H.; Xiao, J.-C. Prediction of solubility properties from transfer energies for acidic phosphorus-containing rare-earth extractants using implicit solvation model. *Solvent Extr. Ion Exch.* **2016**, *34*, 347-354.

(75) Xue, L.; Li, D. Extraction of scandium(III), yttrium(III), lanthanide(III) and iron(III) from hydrochloric acid solutions with di-(2-ethylhexyl) phosphinic acid. *Chin. J. Appl. Chem.* **1992**, *9*, 21-25.

(76) Wang, Z.; Li, J.; Yu, C. Performance of extractant C272 and C274 for separating rare earths. *Chin. Rare. Earth.* **1999**, *20*, 19-22.

(77) Wu, J.; Gao, H.; Chen, D.; Jin, T.; Li, S.; Xu, G. MICROEMULSION FORMATION IN SOME EXTRACTANTS AND ITS EFFECTS ON EXTRACTION MECHANISM. *Science in China, Ser. A* **1980**, *XXIII*, 1533-1544.

(78) Wu, W.; Li, D.; Zhao, Z.; Chen, J.; Zhang, F.; Yin, S.; Qian, M.; Bian, X. Formation mechanism of micro emulsion on aluminum and lanthanum extraction in P507-HCl system. *J. Rare Earth.* **2010**, *28*, 174-178.

(79) Müller, T.; Friedrich, B. Development of a recycling process for nickel-metal hydride batteries. *J. Power Sources* **2006**, *158*, 1498-1509.

(80) Yu, D. H.; Du, R. B.; Xiao, J. C.; Xu, S. M.; Rong, C. Y.; Liu, S. B. Theoretical study of pK_a values for trivalent rare-earth metal cations in aqueous solution. *J. Phys. Chem. A* **2018**, *122*, 700-707.

(81) Li, L.; Wang, Y.; An, W.; Bao, S. Effect of the structure of alkyl salicylaldoxime on extraction of copper(II). *Minerals* **2017**, *7*, 61.

(82) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. Molecular acidity: A quantitative conceptual density functional theory description. *J. Chem. Phys.* **2009**, *131*, 164107-164114.

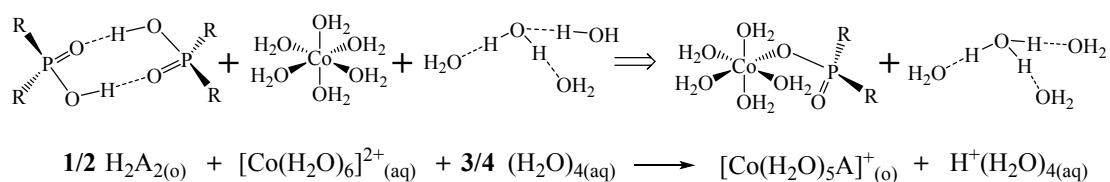


Figure 1. The proposed first extraction step. The Co(II) was used as the example. The Ni(II), Mn(II), and Mg(II) share the same form of Co(II), but the $[\text{Ca}(\text{H}_2\text{O})_7]^{2+}$ and $[\text{Ca}(\text{H}_2\text{O})_6\text{A}]^+$ were used for Ca(II).

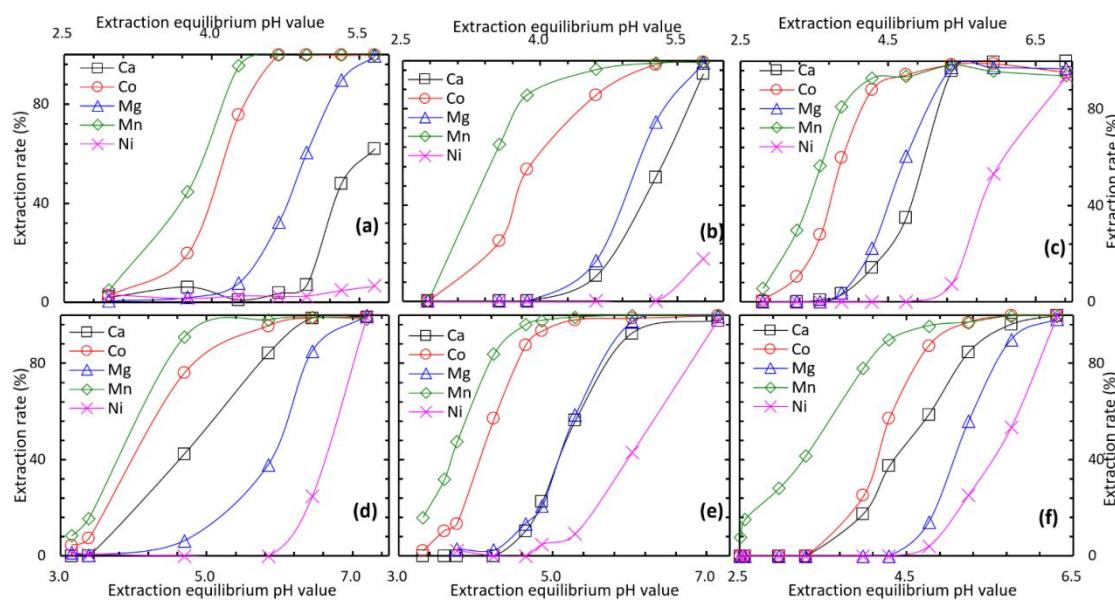
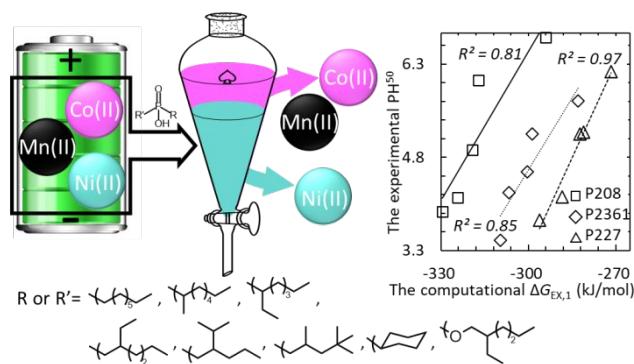


Figure 2. The extraction rate of different metal ions Ca(II), Co(II), Mg(II), Mn(II), and Ni(II) at various equilibrium pH values. The (a), (b), (c), (d), (e), and (f) correspond to P1C6, P127, P118, P208, P227, and P2361.

1
2
3 Table 1. The pH value at 50% extraction rate (pH^{50}) of P227 to the five metal ions under
4 different operation condition.
5
6

$c(\text{mol/L})$	$T(^{\circ}\text{C})$	$t(\text{min})$	Diluent	Ca(II)	Co(II)	Mg(II)	Mn(II)	Ni(II)	The order of pH^{50}
0.05	25	30	<i>n</i> -Dodecane	5.23	4.23	5.25	3.90	6.25	Mn<Co<Ca≈Mg<Ni
0.20	25	30	<i>n</i> -Dodecane	5.20	4.16	5.18	3.79	6.18	Mn<Co<Mg≈Ca<Ni
0.50	25	30	<i>n</i> -Dodecane	4.93	4.03	5.07	3.60	5.97	Mn<Co<Ca<Mg<Ni
0.20	25	60	<i>n</i> -Dodecane	5.19	4.13	5.18	3.77	6.19	Mn<Co<Mg≈Ca<Ni
0.20	25	15	<i>n</i> -Dodecane	5.23	4.20	5.25	3.80	6.21	Mn<Co<Mg≈Ca<Ni
0.20	25	5	<i>n</i> -Dodecane	5.32	4.30	5.36	3.83	6.41	Mn<Co<Mg≈Ca<Ni
0.20	10	30	<i>n</i> -Dodecane	5.20	4.20	5.33	4.10	6.35	Mn<Co<Ca<Mg<Ni
0.20	40	30	<i>n</i> -Dodecane	5.30	4.30	5.50	4.40	6.70	Mn<Co<Ca<Mg<Ni
0.20	25	30	Sulfonated Kerosene	5.33	4.18	5.20	3.71	6.13	Mn<Co<Mg<Ca<Ni
0.20	25	30	Toluene	5.40	4.28	5.29	3.88	6.30	Mn<Co<Mg<Ca<Ni
0.20	25	30	E110	5.25	4.22	5.14	3.85	6.22	Mn<Co<Mg<Ca<Ni


Table 2. The pH⁵⁰ of different APCC to various metal ions.

name	pK _a	Structure	Ca(II)	Co(II)	Mg(II)	Mn(II)	Ni(II)	The order of pH ⁵⁰
P1C6	5.36		5.51	3.83	4.87	3.59	>5.6	Mn<Co<Mg<Ca<Ni
P127	5.82		5.24	3.78	5.00	3.37	>5.8	Mn<Co<Mg<Ca<Ni
P118	5.42		4.91	3.88	4.62	3.52	5.88	Mn<Co<Mg<Ca<Ni
P208	4.96		4.92	4.15	6.04	3.93	6.73	Mn<Co<Ca<Mg<Ni
P227	5.60		5.20	4.16	5.18	3.79	6.18	Mn<Co<Mg≈Ca<Ni
P2361	5.80		4.57	4.23	5.18	3.46	5.71	Mn<Co<Ca<Mg<Ni

1
2
3
4
5 Table 3. The difference of Gibbs free energies of the simplified extraction reaction $\Delta G_{EX,1}$
6 (kJ·mol⁻¹). The pH⁵⁰ of Cyanex 272 (C272) and P507 were also tested and collected for
7 comparation.
8
9

	APCC	Ca(II)	Co(II)	Mg(II)	Mn(II)	Ni(II)	The order of $\Delta G_{EX,1}$
Training	P1C6	-298.70	-301.02	-300.36	-302.31	-269.64	Mn<Co<Mg<Ca<Ni
	P127	-272.05	-285.11	-276.57	-288.83	-267.55	Mn<Co<Mg<Ca<Ni
	P118	-284.30	-296.59	-284.48	-301.86	-274.53	Mn<Co<Mg≈Ca<Ni
	P208	-319.22	-324.36	-317.17	-329.46	-294.15	Mn<Co<Ca<Mg<Ni
	P227	-281.10	-288.32	-282.41	-296.20	-271.57	Mn<Co<Mg<Ca<Ni
	P2361	-300.34	-306.76	-298.62	-309.70	-282.97	Mn<Co<Ca<Mg<Ni
Test	C272	-306.27	-301.79	-304.03	-308.62	-275.84	Mn<Ca<Mg<Co<Ni
		4.97	4.29	5.06	3.99	6.13	Mn<Co<Ca<Mg<Ni
	P507	-297.42	-296.92	-295.79	-298.58	-278.22	Mn<Ca<Co<Mg<Ni
		3.21	3.88	4.45	3.10	5.37	Mn<Ca<Co<Mg<Ni

TOC Graphic

