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Abstract: The reaction of thiocarbonyl fluoride, generated
from difluorocarbene, with various amines under mild con-
ditions is described. Secondary amines, primary amines, and o-
phenylenediamines are converted to thiocarbamoyl fluorides,
isothiocyanates, and difluoromethylthiolated heterocycles,
respectively. Thiocarbamoyl fluorides were further trans-
formed into trifluoromethylated amines by using a one-pot
process. Thiocarbonyl fluoride is generated in situ and is
rapidly fully converted in one pot under mild conditions;
therefore, no special safety precautions are needed.

Difluorocarbene is a valuable and versatile intermediate in
organic synthesis, particularly for fluorine incorporation.[1]

Recently, we described the use of difluorocarbene generated
from Ph3P

+CF2CO2
@ (PDFA), a reagent that was developed

by our group[2] and has also been used by other groups,[3] as
a key intermediate for the challenging 18F-trifluoromethyl-
thiolation.[2c,f] Our mechanistic investigations of trifluoro-
methylthiolation showed that the key process is the reaction
of difluorocarbene with elemental sulfur (S8) to produce
thiocarbonyl fluoride (CF2=S),[2f] a transformation that has
never been reported before. Although thiocarbonyl fluoride
is an important fluorinated material, its use in synthetic
chemistry remains largely unexplored because its preparation
usually requires the use of hazardous reagents (such as
thiophosgene) and/or harsh reaction conditions (e.g., pyrol-
ysis at 500 88C). Furthermore, special safety precautions must
be taken during storage and transfer of thiocarbonyl fluoride
because of its high toxicity and low boiling point (@54 88C).[4]

Our protocol for the use of thiocarbonyl fluoride is conven-
ient and promising because thiocarbonyl fluoride is generated
in situ and rapidly fully converted in one pot under mild
conditions. Successful use of thiocarbonyl fluoride in reaction
with oxygen nucleophiles[2g] prompted us to investigate
nitrogen nucleophiles, such as unprotected amines.

Our initial reaction of secondary amine 1a with thiocar-
bonyl fluoride generated from the PDFA/S8 system gave
thiocarbamoyl fluoride 2 a (Scheme 1). A brief survey of the
reaction conditions (see the Supporting Information for
details) showed that the conversion proceeded smoothly

using 1.5 equivalents of PDFA and 0.25 equivalents of S8 in
1,2-dimethoxyethane (DME) at 50 88C. After complete con-
sumption of amine 1a, the addition of AgF in a one-pot
process resulted in desulfurization–fluorination of 2a to
afford trifluoromethyl amine A1 in high yield (80 % overall
yield).[5] Despite recent important achievements in CF3

incorporation,[6] construction of the NCF3 moiety remains
challenging. Traditional synthetic methods, such as deoxy-
(sulfur)–fluorination or halogen–fluorine exchange reactions,
suffer from tedious procedures or the use of hazardous
reagents (SF4, BrF3, or HF).[7] Although electrophilic, radical,
and nucleophilic trifluoromethylation approaches are effec-
tive,[8] CF3-substituted free amines cannot be easily obtained
by using these approaches because the nitrogen atom in NCF3

must, usually, be attached to another heteroatom (nitrogen,
oxygen, or sulfur)[8c–f] or because the trifluoromethylation
reagent is unstable and highly reactive.[8a]

With the optimized reaction conditions in hand, we
investigated the substrate scope of the one-pot reaction of
thiocarbonyl fluoride with secondary amines and subsequent
desulfurization–fluorination (Table 1). Various N@aryl-
N@alkyl amines were converted to the desired products in
high yields irrespective of whether the aryl groups contained
electron-rich, -neutral, or -deficient substituents (A1–A21).
N,N-Diphenyl amine was not suitable for this reaction
because of the low nucleophilicity of the amino group
(A22). The conversion of N,N-dialkyl amines proceeded
smoothly to furnish the expected products in high yields
(A23–A32). The stabilities of A23–A32 depend significantly
on the electronic effects of the substituents. The alkyl groups
in the N,N-dialkyl amines must be attached to electron-
withdrawing groups, such as Ph (A23 and A24), CO2Et (A23),
or CH2NR’ (A26–A30); otherwise, the products decompose
easily and, therefore, cannot be isolated by using flash column
chromatography (A25, A31, and A32). N,N-Dialkyl CF3-
amines readily undergo fluorine elimination because of
n(N)!s*(C@F) electron donation. This decomposition pro-
cess was retarded by introducing electron-withdrawing groups
into the alkyl groups. The formation of heterocycle-contain-
ing amines (A20–A21 and A26–A30) may find utility in
biochemistry.

Scheme 1. Reaction of thiocarbonyl fluoride with a secondary amine
and subsequent fluorination in one pot. Yields were determined by
19F NMR spectroscopy.
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The successful reaction of thiocarbonyl fluoride with
secondary amines prompted us to investigate its reaction with
primary amines. It was found that the PDFA/S8 system
converted primary amines to isothiocyanates instead of
thiocarbamoyl fluorides. All of the reactions of primary
amines were fast (5 min) in DME at 80 88C as shown in Table 2.
Various arylamines were converted to the desired products in
high yields and with a high level of functional-group tolerance
(B1–B19). Investigation of the electronic effects showed that
neither electron-rich nor electron-withdrawing groups sup-
pressed the desired conversion. Gratifyingly, heteroaryl
amines were suitable for this transformation (B20–B22).
The reaction is not sensitive to steric effects, as shown by the
high yields of sterically hindered products B4–B6 and B21.
We previously reported that an alkynyl group can undergo
[2++1] cyclization with difluorocarbene generated from
PDFA;[2d] however, in this reaction the alkynyl group
remained intact, confirming high functional-group compati-

bility (B11 and B12). The transformation of amines contain-
ing a basic group, such as a tertiary amino (B9) or pyridinyl
group (B20–B21), also proceeded smoothly. The tertiary
amine group remained intact under these conditions (B9),
although both primary and secondary amines are highly
reactive towards thiocarbonyl fluoride. The yields of the
desired products obtained from the reactions of alkyl amines
(B23–B35) were lower than the product yields from aryl-
amines. The reactions proceeded smoothly irrespective of
whether the carbon atom attached to the amino group was
a primary (B23–B26, B32, and B33), secondary (B27–B29 and
B34), or tertiary carbon center (B30, B31 and B35). This
finding indicates that steric hindrance did not affect the
reactions of alkyl amines. Amantadine is an antiviral and
antiparkinsonian drug that has been approved by the U.S.
Food and Drug Administration. The isothiocyanate deriva-
tive of this drug was easily obtained by the strategy described
herein (B35). Isothiocyanates occur widely in nature and are
of interest in various areas, such as food science, medicine,
and synthetic chemistry.[9] This convenient protocol has a wide
range of potential applications for the synthesis of isothio-
cyanates.

A convenient route to the insecticide chloromethiuron
(CAS registry number: 28217-97-2) from a commercially
available amine was developed to show the synthetic utility of
this strategy for the conversion of primary amines
(Scheme 2). The formation of isothiocyanate B36 was fast,

Table 1: Substrate scope for the one-pot reaction of thiocarbonyl fluoride
with secondary amines and subsequent fluorination.

Yields of isolated products are shown. The yields in parentheses were
determined by using 19F NMR spectroscopy. Reaction conditions:
1 (0.8 mmol), PDFA (1.5 equiv), and S8 (0.25 equiv) in DME at 50 88C for
0.5 h in a N2 atmosphere. AgF (4.5 equiv) was then added and the
resulting mixture was stirred at 80 88C for 5 h.

Table 2: Reaction of thiocarbonyl fluoride with primary amines. Isolated
yields.

Reaction conditions: 3 (0.8 mmol), PDFA (1.5 equiv), and S8

(0.375 equiv) in DME at 80 88C for 5 min in a N2 atmosphere.
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although the scale of the reaction was increased to 10 mmol.
A high overall yield (81%) was obtained by means of a two-
step procedure.

As shown in Scheme 2, the acyclic thiourea motif was
constructed in two steps. It is reasonable to assume that only
one step would lead to a cyclic thiourea if two amino groups
are present in the substrate. This was confirmed by the rapid
conversion of the vicinal diamine 4a to cyclic thiourea 5a
(Scheme 3). Replacing one amino group with a hydroxy
group gave oxazolidinethione 5b in 73% yield. Thioureas[10]

and oxazolidinethiones[11] are extensively used in medicinal
chemistry and catalysis, therefore, the present protocol will be
of great synthetic utility.

Thiocarbonyl fluoride generated from the PDFA/S8

system is the key intermediate in the conversion of both
primary and secondary amines. Simply heating a mixture of
PDFA/S8 in DME produces CF2=S, as confirmed by using
HRMS(EI) spectroscopy [Scheme 4, Eq. (1)]. The reaction of
conjugated diene 6 with the PDFA/S8 system generates
a CF2S-containing bridged compound [7, Scheme 4, Eq. (2)].
This bridged compound is formed by a Diels–Alder reaction
of diene 6 with CF2=S produced in situ. Furthermore, addition
of substrate 1a after complete consumption of PDFA by
heating the PDFA/S8 mixture at 80 88C still gave the desired

thiocarbamoyl fluoride 2a in 15% yield [Scheme 4, Eq. (3)].
This low yield can be explained by side reactions of CF2=S in
the absence of a substrate because of its high reactivity.

Recently, Schoenebeck and co-workers reported an
excellent procedure for the synthesis of trifluoromethyl
amines and isothiocyanates from the reaction of [Me4N

+

CF3S
@] with secondary [Scheme 5, Eq. (1)][5b] and primary

[Scheme 5, Eq. (2)] amines.[12] Thioureas could also be
obtained if two amino groups were present in the sub-
strates.[12] Their strategy for the synthesis of trifluoromethyl
amines, pioneering work involving a one-pot-two-step trans-
formation, is attractive owing to a rapid reaction process,
a wide substrate scope, and a simple purification procedure.[5b]

Thiocarbonyl fluoride is not the intermediate in the reaction
reported by Schoenebeck and co-workers.[5b, 12] During
the preparation of this manuscript, Zheng and co-workers
reported that Langlois reagent (CF3SO2Na) can also partic-
ipate in isothiocyanation of primary amines in the presence of
CuI/HPO(OEt)2 [Scheme 5, Eq. (2)].[13] Although it was
proposed that thiocarbonyl fluoride is one of the key
intermediates, no direct evidence was observed. This
approach suffers from a narrow substrate scope (limited
suitability of alkyl amines), low functional-group tolerance
(e.g., pyridinyl and terminal alkynyl groups are not tolerated),
and the need for a long reaction time (16 h).

The HCF2S-substituted benzimidazole C1 (18 % yield)
was obtained from conversion of vicinal phenylenediamine
8a under the same reaction conditions as for the reaction of
a vicinal diamine in Scheme 3. This unexpected product was
formed by means of a tandem cyclization/difluoromethylation
process (for the proposed mechanism and experimental
evidence, see the Supporting Information). After identifica-
tion of the optimum conditions (see the Supporting Informa-
tion), we explored the substrate scope for the reaction of
thiocarbonyl fluoride with o-phenylenediamines or vicinal
hydroxy (or amino) arylamines. As shown in Table 3, all of the
reactions occurred rapidly (5 min) to furnish the desired
HCF2S heterocycles in good yields. The electronic effects of
the substituents in various o-phenylenediamines (C1–C19)
were investigated. Although electron-withdrawing groups
decrease the nucleophilicity of the amino group, substrates
containing electron-withdrawing groups were converted
smoothly to form the desired HCF2S-substituted benzimida-
zoles (C11–C19). Replacing one of the amino groups with
a hydroxy or thiol group afforded the HCF2S-substituted
benzoxazole (C20) and benzothiazole (C21), respectively, but
the yields were lower because of the lower nucleophilicity of
hydroxy and thiol groups. As well as five-membered hetero-

Scheme 2. Synthesis of chloromethiuron.

Scheme 3. Reaction of thiocarbonyl fluoride with vicinal diamine and
vicinal hydroxyl amine.

Scheme 4. Generation and detection of CF2=S. [a] Yield determined by
using 19F NMR spectroscopy.

Scheme 5. Recently reported methods for incorporation of the CF3

group and isothiocyanation.
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cycles (C1–C21), six-membered heterocycles were formed
using this strategy (C22–C25). When the ortho substituent of
the amino group was an amide or carboxylic acid group,
HCF2S-substituted 4-quinazolinone (C22 and C23) and 3,1-
benzoxazin-4-one (C24), respectively, were obtained. The
imidazole NH group was able to act as a nucleophilic site to
form a bridged ring (C25). Increasing the scale of the reaction
to 10 mmol still afforded the desired product C25 in good
yield (70%), which demonstrates the synthetic utility of this
tandem strategy. Although the heterocyclic NH group is
a potential reactive site for difluoromethylation with di-
fluorocarbene,[2d] the NH moieties in the above products
remained intact, enabling further transformations. The struc-
tures of products C6[14] and C23[15] were confirmed by using X-
ray diffraction (see the Supporting Information).

Heterocyclic compounds are important in many areas of
life sciences.[16] The construction and structural modification
of heterocycles have, therefore, attracted much attention
from the chemical community.[17] The HCF2S group can act as
a lipophilic hydrogen-bond donor, therefore its incorporation
into a heterocycle profoundly changes the physiochemical
properties of the target compound.[18] Biologically active
HCF2S-substituted heterocycles have been reported. For
example, pyriprole, an insecticide for veterinary use on dogs
against external parasites, contains a HCF2S-pyrazole
moiety.[18b] In recent years, much effort has focused on the
development of efficient methods for the incorporation of
HCF2S functionalities into organic molecules;[19] however, the
synthesis of HCF2S-substituted heterocycles remains largely
unexplored. Recent approaches, including radical difluoro-

methylation of heteroarenethiols[20] and direct difluorome-
thylthiolation,[21] are effective, but all methods require the use
of heteroarenes as substrates. The above strategy is the first
example of fast and convenient construction of heterocycles
with further incorporation of a HCF2S group.

In conclusion, we have described the reactions of thio-
carbonyl fluoride, formed from difluorocarbene, with unpro-
tected amines. Amines undergo different reactions depending
on their structures. Secondary amines, primary amines, and o-
phenylenediamines are converted to thiocarbamoyl fluorides,
isothiocyanates, and HCF2S-substituted heterocycles, respec-
tively. Thiocarbamoyl fluorides were further transformed into
CF3-amines by using a one-pot process. Thiocarbonyl fluoride
is generated in situ and is rapidly fully converted in one pot
under mild conditions, therefore, no special safety precau-
tions are needed. The convenient use of thiocarbonyl fluoride
has potential synthetic applications in various research areas.
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