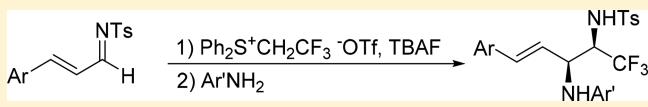
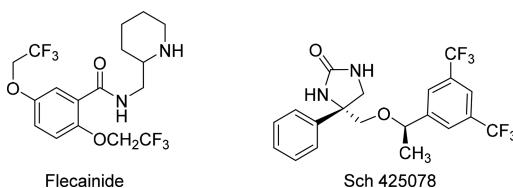


Diastereoselective Synthesis of CF_3 -Containing Vicinal Diamines


Qiu-xia Huang,^{†,‡,§} Qu-tong Zheng,^{†,‡,§} Yaya Duan,[‡] Jin-Hong Lin,^{*,‡,§} Ji-Chang Xiao,^{*,†,‡,§} and Xing Zheng^{*,†,‡}

[†]Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China

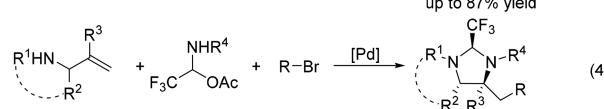
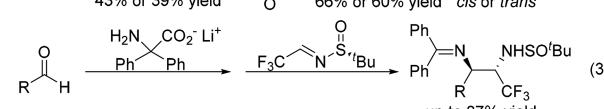
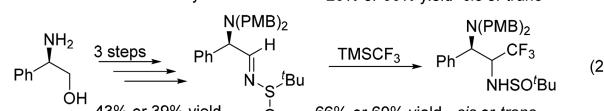
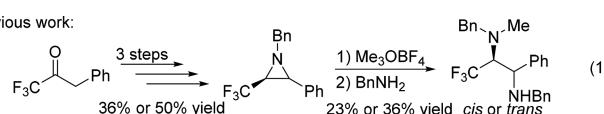
[‡]Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China


 Supporting Information

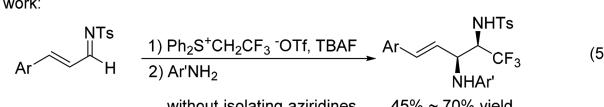
ABSTRACT: The highly diastereoselective synthesis of CF_3 -containing vicinal diamines by a convenient two-step procedure without the need to isolate the intermediate products is described.

Vicinal diamines represent highly important scaffolds in natural products, pharmaceuticals, and agrochemicals.¹ Because the trifluoromethyl group (CF_3) has proved to be a valuable pharmacophore in medicinal chemistry and agrochemistry,² its incorporation into vicinal diamines may improve biological properties. Indeed, biologically active CF_3 -containing vicinal diamines have appeared. For instance, Flecainide is a commercially available drug which is used to prevent and treat tachyarrhythmias (abnormal fast rhythms of the heart),³ and Sch 425078 has been shown to be a potent neurokinin antagonist (Scheme 1).⁴ Therefore, it is highly desirable to

Scheme 1. Biologically Active CF_3 -Containing Vicinal Diamines

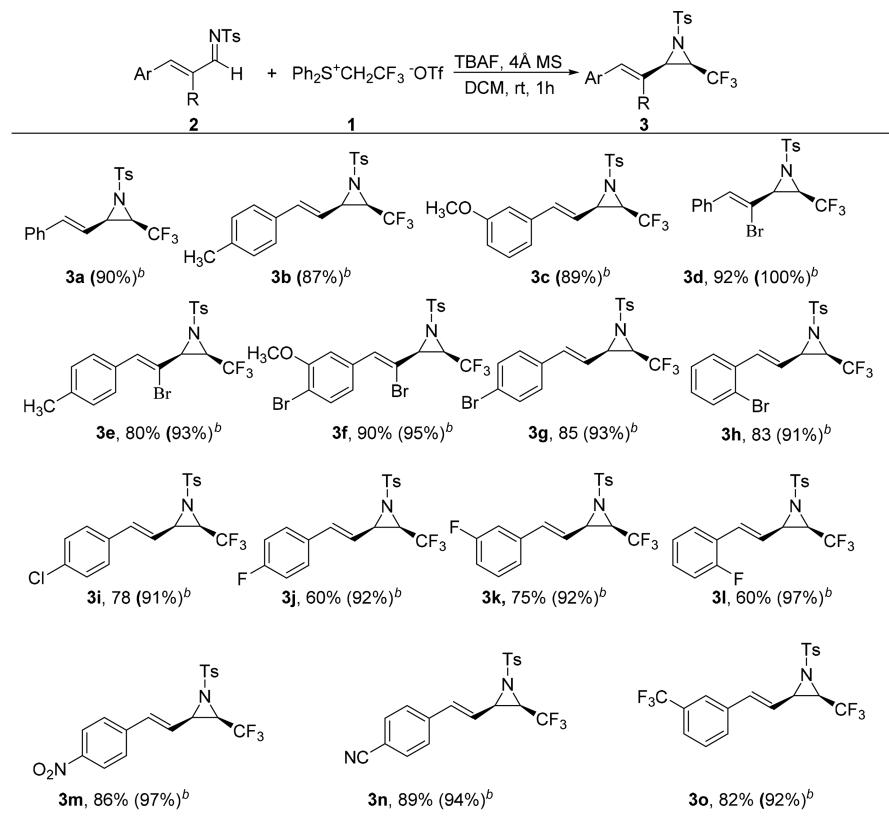
develop mild protocols to access CF_3 -vicinal diamines. Surprisingly, although significant efforts have been directed toward the exploration of efficient methods to prepare vicinal diamines,^{1e,5} the diastereoselective synthesis of CF_3 -containing vicinal diamines remains largely unexplored.


Although CF_3 -containing vicinal diamines could be easily obtained,⁶ their diastereoselective synthesis has not been realized until recently. In 2014, D'hooghe, De Kimpe et al. described the Lewis acid promoted ring opening of aziridine to give CF_3 -vicinal diamines (Scheme 2, eq 1).⁷ Almost at the same time, Fustero and co-workers obtained the diamine derivatives by trifluoromethylation of α -amino imines (eq 2).⁸ Although these examples represented a breakthrough in the diastereoselective synthesis of CF_3 -vicinal diamines, a multistep procedure and low yields limit their synthetic utility. In 2015, Han, Soloshonok et al. reported a two-step procedure to achieve diamines in high yields (eq 3).⁹ Recently, the group of

Scheme 2. Synthesis of CF_3 -Containing Vicinal Diamines

Previous work:

This work:



Waser disclosed the Pd-catalyzed three-component synthesis of diamines via in situ aminal formation and carboamination (eq 4).¹⁰ In all of these reactions, high diastereoselectivity was obtained (eqs 1–4). But the convenient and diastereoselective synthesis of CF_3 -containing vicinal diamines remains a challenging task.

We have previously found that CF_3 -aziridines could be easily prepared in high yields and with high diastereoselectivity by cyclization of imines with sulfonium ylide [$\text{Ph}_2\text{S}^+\text{CH}_2\text{CF}_3$] generated in situ from sulfonium salt 1 [$\text{Ph}_2\text{S}^+\text{CH}_2\text{CF}_3$ –OTf].¹¹ We speculated that ring opening of CF_3 -aziridines with amines may furnish CF_3 -containing vicinal diamines. In continuation of our research interest in the incorporation of

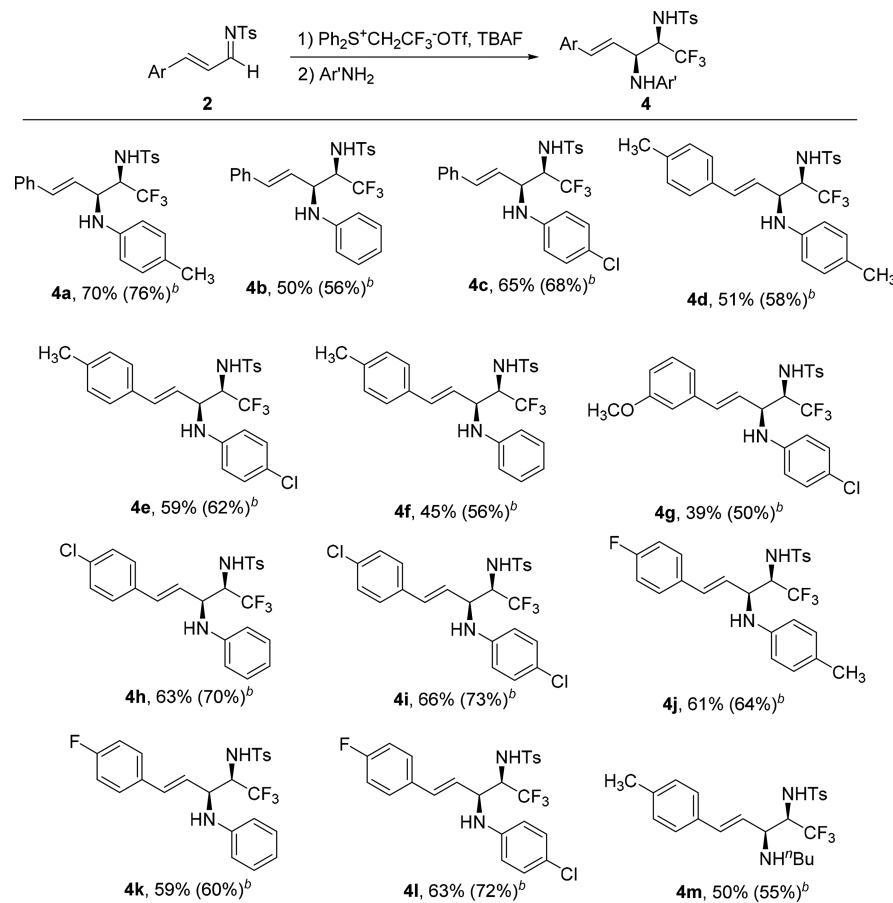
Received: May 23, 2017

Published: July 7, 2017

Scheme 3. Synthesis of Vinyl Imines^a

^aIsolated yields. ^bThe yields in parentheses were determined by ¹⁹F NMR spectrometry.

CF₃ moiety,^{11,12} we have now investigated the convenient synthesis of CF₃-vicinal diamines from imines without the need to isolate the intermediate CF₃-aziridines (Scheme 2, eq 5).


The CF₃-aziridines we have made before were aryl aziridines.¹¹ In this work, we were interested in vinyl aziridines since the vinyl moiety is also a potential functionality for further transformation. Therefore, we first tested if vinyl aziridines could be easily obtained. To our delight, under the same conditions for cyclization of aryl imines,¹¹ vinyl imines were converted smoothly into vinyl aziridines in high yields (Scheme 3). High diastereoselectivity was observed in all reactions (*cis/trans* > 9:1). Although high yields were obtained for the conversion of electron-neutral and -rich imines, the desired products were unstable and therefore could not be isolated (3a–3c). Interestingly, the presence of a bromo-substituent in the vinyl moiety could stabilize the products (3d–3f). Electron-deficient imines were well transformed, and the expected products were isolated in good yields (3g–3o). The structure and relative configuration of product 3m were confirmed by single crystal X-ray diffraction.¹³

Since the availability of CF₃-aziridines was not an issue, we then examined the convenient synthesis of CF₃-vicinal diamines without isolating CF₃-aziridines. A two-step procedure was performed, including cyclization of vinyl imine to give aziridines (step 1) and ring opening of aziridine by an aryl amine (step 2) to afford the desired product. To our delight, the one-pot procedure by cyclization of substrate 2a and the subsequent direct addition of 4-methylphenyl amine (4-MeC₆H₄NH₂) could furnish product 4a in 56% yield (Table 1, entry 1). Elevating the reaction temperature of step 2 increased the yield

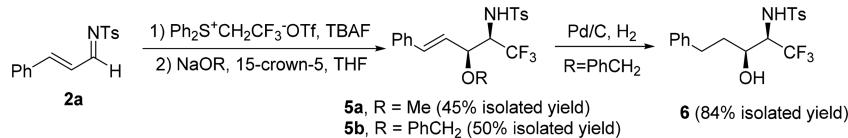
Table 1. Screening Conditions for the Synthesis of CF₃-Vicinal Diamines^a

entry	solvent	temp (°C)	ratio ^b	yield (%) ^c
1 ^d	DCM	rt	1:1:1.25:1	56
2 ^d	DCM	reflux	1:1:1.25:1	65
3	DMA	60	1:1:1.25:1	76
4	NMP	60	1:1:1.25:1	35
5	CH ₃ CN	60	1:1:1.25:1	trace
6	THF	60	1:1:1.25:1	33
7	1,4-Dioxane	60	1:1:1.25:1	35
8	DMA	60	1:1:1.25:1.25	74
9	DMA	60	1:1:1.25:1.7	65
10	DMA	rt	1:1:1.25:1	72
11	DMA	40	1:1:1.25:1	71
12	DMA	80	1:1:1.25:1	71

^aReaction conditions: substrate 2a (0.2 mmol), salt 1, TBAF, 4 Å MS (80 mg) in DCM (2 mL) at rt under a N₂ atmosphere for 1 h (step 1). 4 Å MS was removed by filtration. The filtrate was concentrated to give crude aziridine, into which was added 4-MeC₆H₄NH₂ and solvent (2 mL) under a N₂ atmosphere. The reaction system was further stirred at the indicated temperature for 2 h (step 2). ^bMolar ratio of 2a/1/TBAF/4-MeC₆H₄NH₂. ^cThe yields were determined by ¹⁹F NMR spectrometry. ^dAfter step 1, 4-MeC₆H₄NH₂ was added directly, and the resulting mixture was further stirred to afford product 4a.

Scheme 4. Synthesis of CF_3 -Vicinal Diamines^a

^aReaction conditions: substrate **2** (0.2 mmol), salt **1** (1 equiv), TBAF (0.25 mL, 1 M), 4 Å MS (80 mg) in DCM (2 mL) at rt for 1 h (step 1); 4 Å MS was removed by filtration. The filtrate was concentrated to give crude aziridine, into which was added amine (1 equiv) and DMA (2 mL). The reaction system was further stirred at 60 °C for 2 h (step 2). Isolated yields. ^bThe yields in parentheses were determined by ¹⁹F NMR spectrometry.


slightly (entry 2). DCM in step 2 should be replaced by another solvent which has a higher boiling point; otherwise, the reaction temperature cannot be further elevated. 4 Å MS used in step 1 might have side effects on step 2 since it could act as a Lewis acid. Therefore, 4 Å MS was removed by filtration after step 1. Indeed, the yield was further increased in DMA without 4 Å MS present in step 2 (entry 3). A brief survey of the reaction solvent in step 2 (entries 3–7) revealed that DMA was a suitable solvent (entry 3). Increasing the loading of the amine led to the decrease in the yield (entries 8–9). Slightly lower yields were obtained by lowering (entries 10–11) or elevating (entry 12) the reaction temperature in step 2.

With the optimized reaction conditions in hand (Table 1, entry 3), we then investigated the substrate scope of the convenient two-step reaction for the synthesis of CF_3 -vicinal diamines (Scheme 4). It is noteworthy that high diastereoselectivity (syn/anti > 94:6) was observed for all reactions. Although electron-neutral and -rich aziridines (**3a**–**3c** in Scheme 3) were too unstable to be isolated, their corresponding CF_3 -vicinal diamines were isolated in moderate to good yields (Scheme 4, **4a**–**4g**). The structure and relative configuration of product **4b** were confirmed by single crystal X-ray diffraction.¹⁴ Moderate yields were obtained for the conversion of electron-deficient imines (**4h**–**4l**). Electron-rich (**4a**, **4d**, and **4j**), -neutral (**4b**, **4f**, **4h**, and **4k**), and -deficient (**4c**, **4e**, **4g**, **4i**, and **4l**) aryl amines were all effective to react

with aziridines to obtain diamines. Besides aryl amines, an alkyl amine could also lead to the ring opening of aziridines to give CF_3 -vicinal diamine (**4m**). In contrast to vinyl imines, although an aryl imine such as phenyl imine ($\text{PhCH} = \text{NHTs}$) could be converted into aziridine, the resulting aziridine could not undergo further ring opening with amines to give vicinal diamines.

Apparently, the two-step procedure is quite convenient for the preparation of CF_3 -containing vicinal diamines. Crude CF_3 -aziridines were obtained simply by filtration and concentration, and the subsequent ring-opening reaction proceeded smoothly to give diamines. Since purification of aziridines is avoided, this protocol is attractive and promising.

The synthesis of vicinal amino alcohols has also received a great deal of attention due to the occurrence of the vicinal amino alcohol motif in a vast range of natural products, bioactive compounds, and reagents used for the stereoselective synthesis.¹⁵ The incorporation of the CF_3 moiety into vicinal amino alcohols may result in profound modification of their physicochemical properties. Since CF_3 -vicinal diamines could be obtained by ring opening of aziridines with amines, CF_3 -containing vicinal amino alcohols may also be prepared by ring opening of aziridines with an alkoxy anion. Indeed, the use of sodium methoxide and sodium phenylmethanolate as the nucleophiles could give the desired product **5a** and **5b**, respectively, without the need to isolate aziridines (Scheme

Scheme 5. Synthesis of CF_3 -Containing Vicinal Amino Alcohol Derivative

5). The structure and relative configuration of product **5a** were confirmed by single crystal X-ray diffraction.¹⁶ The reduction of **5b** successfully gave the expected vicinal amino alcohol **6**.

In conclusion, we have described the efficient synthesis of CF_3 -containing vicinal diamines by a simple two-step procedure without the need to isolate the intermediate products. The convenient procedure could also be applied to the preparation of a CF_3 -containing vicinal amino alcohol derivative. This work represents a mild protocol for the incorporation of the CF_3 moiety into vicinal diamines with high diastereoselectivity and in good yields. This two-step strategy may also find synthetic utility in the incorporation of the fluorinated group into other biologically active compounds.

EXPERIMENTAL SECTION

General Information. ^1H , ^{13}C , and ^{19}F NMR spectra were detected on a 500, 400, or 300 MHz NMR spectrometer. Data for ^1H , ^{13}C , and ^{19}F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (J) in Hz). Mass spectra were obtained on GC-MS or LC-MS (ESI). High resolution mass data were recorded on a high resolution mass spectrometer in the EI, ESI, or MALDI mode. The mass analyzer types for HRMS-EI, HRMS-ESI, and HRMS-MALDI are time-of-flight, Fourier transform mass spectrometer, and Fourier transform mass spectrometer, respectively. Unless otherwise noted, all reagents were obtained commercially and used without further purification. The ^{19}F NMR yields were calculated based on the ^{19}F NMR spectra of the reaction system with addition of an internal standard (PhCF_3).

Procedure for the Synthesis of Sulfonium Salt 1.¹¹ The mixture of 2,2,2-trifluoroethyl triflate (4.64 g, 20 mmol) and diphenyl sulfide (18.6 g, 100 mmol) in a sealed tube was stirred at 150 °C for 30 h. After the reaction mixture was cooled to room temperature, diethyl ether (10 mL) was added to precipitate the crude product, which was then washed with dry diethyl ether to give the final product **1** (5.9 g, 70% yield); ^1H NMR (400 MHz, acetone- d_6) δ 8.36 (d, J = 7.6 Hz, 4H), 7.95–7.89 (m, 2H), 7.87–7.79 (m, 4H), 5.74 (q, J = 8.8 Hz, 2H); ^{19}F NMR (376 MHz, acetone- d_6) δ -61.26 (t, J = 8.8 Hz, 3F), -78.98 (s, 3F).

General Procedure for the Synthesis of 2. Aldehyde (31.5 mmol), sulfonamide (30 mmol), and tetraethyl orthosilicate (120 mmol) were mixed in a flask equipped with a Dean–Stark apparatus which was used to collect ethanol produced from the reaction. The mixture was stirred at 160 °C until no more ethanol was produced. After the reaction system was cooled to room temperature, ethyl acetate/*n*-hexane (1:3) was added to precipitate the crude product. After filtration, the solid was washed with ethyl acetate/*n*-hexane (1:3) followed by ethanol to give the pure product **2**.

(E)-4-Methyl-N-((E)-3-phenylallylidene)benzenesulfonamide (2a).¹⁷ 7.78 g, 91% yield; ^1H NMR (300 MHz, CDCl_3) δ 8.78 (d, J = 9.4 Hz, 1H), 7.86 (d, J = 7.8 Hz, 2H), 7.60–7.39 (m, 6H), 7.34 (d, J = 7.8 Hz, 2H), 6.99 (dd, J = 15.7, 9.4 Hz, 1H), 2.44 (s, 3H).

(E)-4-Methyl-N-((E)-3-(*p*-tolyl)allylidene)benzenesulfonamide (2b).¹⁷ 8.52 g, 95% yield; ^1H NMR (300 MHz, CDCl_3) δ 8.76 (d, J = 9.4 Hz, 1H), 7.85 (d, J = 7.9 Hz, 2H), 7.50–7.41 (m, 3H), 7.33 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 7.7 Hz, 2H), 6.94 (dd, J = 15.7, 9.4 Hz, 1H), 2.43 (s, 3H), 2.39 (s, 3H).

(E)-N-((E)-3-(3-Methoxyphenyl)allylidene)-4-methylbenzenesulfonamide (2c).¹⁸ 8.50 g, 90% yield; ^1H NMR (400 MHz, CDCl_3) δ 8.76 (d, J = 9.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 15.8 Hz,

1H), 7.35–7.28 (m, 3H), 7.13 (d, J = 7.5 Hz, 1H), 7.05 (s, 1H), 7.00–6.89 (m, 2H), 3.80 (s, 3H), 2.42 (s, 3H).

(E)-N-((Z)-2-Bromo-3-phenylallylidene)-4-methylbenzenesulfonamide (2d). Yellow solid, 6.10 g, 56% yield; mp 127.3–128.1 °C. ^1H NMR (400 MHz, CDCl_3) δ 8.74 (s, 1H), 7.98 (d, J = 5.8 Hz, 2H), 7.92–7.83 (m, 3H), 7.55–7.39 (m, 3H), 7.33 (d, J = 7.4 Hz, 2H), 2.43 (s, 3H). ^{13}C NMR (101 MHz, CDCl_3) δ 169.5 (s), 151.2 (s), 144.8 (s), 134.9 (s), 133.3 (s), 131.8 (s), 131.2 (s), 129.9 (s), 128.7 (s), 128.1 (s), 118.5 (s), 21.7 (s). IR (neat) ν = 3050, 1611, 1583, 1570, 1449, 1330, 1300, 1289, 1147, 1084, 998, 864, 823, 811, 787, 755, 689, 669, 593, 573, 505 cm^{-1} . HRMS (MALDI/DHB): calcd for $\text{C}_{16}\text{H}_{15}\text{BrNO}_2\text{S}$ [M + H]⁺, 364.0001; found, 364.0013.

(Z)-N-((Z)-2-Bromo-3-(*p*-tolyl)allylidene)-4-methylbenzenesulfonamide (2e). Yellow solid, 7.35 g, 65% yield; mp 145.3–147.1 °C. ^1H NMR (500 MHz, CDCl_3) δ 8.70 (s, 1H), 7.91 (d, J = 7.5 Hz, 2H), 7.89 (d, J = 7.5 Hz, 2H), 7.83 (s, 1H), 7.35 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H), 2.41 (s, 3H). ^{13}C NMR (126 MHz, CDCl_3) δ 169.4 (s), 151.0 (s), 144.6 (s), 142.9 (s), 135.1 (s), 131.4 (s), 130.6 (s), 129.8 (s), 129.5 (s), 128.0 (s), 117.4 (s), 21.7 (s), 21.6 (s). IR (neat) ν = 3050, 2935, 2835, 1595, 1568, 1468, 1438, 1418, 1319, 1304, 1293, 1242, 1155, 1089, 1058, 1018, 823, 809, 698, 623, 587, 551 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{17}\text{H}_{17}\text{BrNO}_2\text{S}$ [M + H]⁺, 378.0158; found, 378.0153.

(E)-N-((Z)-2-Bromo-3-(4-bromo-3-methoxyphenyl)allylidene)-4-methylbenzenesulfonamide (2f). Yellow solid, 6.63 g, 47% yield; mp 145.3–147.1 °C. ^1H NMR (500 MHz, CDCl_3) δ 8.78 (s, 1H), 8.03 (s, 1H), 7.91 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 2.1 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 7.9 Hz, 2H), 6.90 (dd, J = 8.8, 2.2 Hz, 1H), 3.83 (s, 3H), 2.46 (s, 3H). ^{13}C NMR (126 MHz, CDCl_3) δ 168.5 (s), 158.4 (s), 149.4 (s), 144.9 (s), 134.7 (s), 133.9 (s), 133.7 (s), 129.9 (s), 128.2 (s), 121.8 (s), 118.5 (s), 116.1 (s), 115.9 (s), 55.7 (s), 21.7 (s). IR (neat) ν = 3050, 2935, 2835, 1595, 1568, 1468, 1438, 1418, 1319, 1304, 1293, 1242, 1155, 1089, 1058, 1018, 823, 809, 698, 623, 587, 551 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{17}\text{H}_{16}\text{BrNO}_3\text{S}$ [M + H]⁺, 471.9207.

(E)-N-((E)-3-(4-Bromophenyl)allylidene)-4-methylbenzenesulfonamide (2g). Yellow solid, 9.7 g, 89% yield; mp 191.7–192.3 °C. ^1H NMR (400 MHz, CDCl_3) δ 8.78 (d, J = 9.3 Hz, 1H), 7.87 (d, J = 7.9 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.48–7.40 (m, 3H), 7.36 (d, J = 7.8 Hz, 2H), 6.97 (dd, J = 15.8, 9.4 Hz, 1H), 2.45 (s, 3H). ^{13}C NMR (101 MHz, CDCl_3) δ 170.5 (s), 152.0 (s), 144.6 (s), 135.2 (s), 133.0 (s), 132.5 (s), 129.8 (s), 128.0 (s), 126.1 (s), 125.3 (s), 21.6 (s). IR (neat) ν = 3020, 1621, 1591, 1574, 1486, 1404, 1316, 1304, 1289, 1156, 1085, 1070, 1002, 966, 859, 807, 777, 678, 590, 553 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{16}\text{H}_{14}\text{BrNNaO}_2\text{S}$ [M + Na]⁺, 385.9821; found, 385.9809.

(E)-N-((E)-3-(2-Bromophenyl)allylidene)-4-methylbenzenesulfonamide (2h). Yellow solid, 5.99 g, 55% yield; mp 123.4–124.9 °C. ^1H NMR (400 MHz, CDCl_3) δ 8.84 (d, J = 9.4 Hz, 1H), 7.95–7.85 (m, 3H), 7.65 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.33–7.39 (m, 3H), 7.28 (td, J = 8.0, 1.6 Hz, 1H), 6.94 (dd, J = 15.8, 9.4 Hz, 1H), 2.45 (s, 3H). ^{13}C NMR (101 MHz, CDCl_3) δ 170.5 (s), 151.4 (s), 144.6 (s), 135.1 (s), 133.9 (s), 133.7 (s), 132.4 (s), 129.8 (s), 128.0 (s), 128.0 (s), 126.9 (s), 125.9 (s), 21.6 (s). IR (neat) ν = 3029, 2360, 1915, 1618, 1578, 1440, 1372, 1314, 1303, 1287, 1168, 1153, 1088, 1009, 970, 855, 813, 774, 751, 683, 668, 581, 553 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{16}\text{H}_{15}\text{BrNO}_2\text{S}$ [M + H]⁺, 364.0001; found, 364.0001.

(E)-N-((E)-3-(4-Chlorophenyl)allylidene)-4-methylbenzenesulfonamide (2i).¹⁷ 8.13 g, 85% yield; ^1H NMR (300 MHz, CDCl_3) δ 8.76 (d, J = 9.3 Hz, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.60–7.27 (m, 7H), 6.94 (dd, J = 15.6, 9.3 Hz, 1H), 2.43 (s, 3H).

(E)-N-((E)-3-(4-Fluorophenyl)allylidene)-4-methylbenzenesulfonamide (2j). Yellow solid, 6.45 g, 71% yield; mp 108.9–109.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 9.4 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 2H), 7.61–7.52 (m, 2H), 7.47 (d, *J* = 15.8 Hz, 1H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.09 (t, *J* = 8.3 Hz, 2H), 6.89 (dd, *J* = 15.8, 9.4 Hz, 1H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.58 to -106.86 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 170.8 (s), 164.5 (d, *J* = 254.0 Hz), 152.4 (s), 144.5 (s), 135.3 (s), 130.7 (d, *J* = 8.8 Hz), 130.5 (d, *J* = 3.3 Hz), 129.8 (s), 127.9 (s), 124.3 (s), 116.4 (d, *J* = 22.1 Hz), 21.6 (s). IR (neat) ν = 3052, 1900, 1620, 1591, 1577, 1511, 1363, 1311, 1289, 1256, 1235, 1168, 1085, 1023, 976, 868, 823, 814, 800, 755, 681, 596, 552, 507 cm⁻¹. HRMS (ESI): calcd for C₁₆H₁₅FNO₂S [M + H]⁺: 304.0802; found, 304.0807.

(E)-N-((E)-3-(3-Fluorophenyl)allylidene)-4-methylbenzenesulfonamide (2k). Yellow solid, 4.54 g, 50% yield; mp 107.9–109.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 9.3 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 15.8 Hz, 1H), 7.40–7.27 (m, 4H), 7.20 (d, *J* = 9.5 Hz, 1H), 7.10 (td, *J* = 8.3, 1.6 Hz, 1H), 6.92 (dd, *J* = 15.8, 9.3 Hz, 1H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.65 to -111.82 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 170.4 (s), 162.9 (d, *J* = 247.7 Hz), 151.9 (d, *J* = 2.8 Hz), 144.6 (s), 136.2 (d, *J* = 7.7 Hz), 135.0 (s), 130.7 (d, *J* = 8.3 Hz), 129.8 (s), 127.9 (s), 125.8 (s), 124.5 (d, *J* = 2.9 Hz), 118.3 (d, *J* = 21.4 Hz), 114.7 (d, *J* = 22.1 Hz), 21.6 (s). IR (neat) ν = 3070, 1624, 1578, 1450, 1318, 1305, 1291, 1265, 1170, 1153, 1090, 963, 821, 803, 793, 786, 747, 680, 583, 550 cm⁻¹. HRMS (ESI): calcd for C₁₆H₁₅FNO₂S [M + H]⁺: 304.0802; found, 304.0801.

(E)-N-((E)-3-(2-Fluorophenyl)allylidene)-4-methylbenzenesulfonamide (2l). Yellow solid, 8.20 g, 90% yield; mp 99.3–99.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 9.4 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 16.0 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.47–7.37 (m, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.05 (dd, *J* = 16.0, 9.4 Hz, 1H), 2.43 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.57 to -113.75 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 170.9 (s), 161.3 (d, *J* = 255.7 Hz), 145.8 (d, *J* = 3.2 Hz), 144.6 (s), 135.1 (s), 133.2 (d, *J* = 9.0 Hz), 129.8 (s), 129.0 (s), 128.0 (s), 126.9 (d, *J* = 6.2 Hz), 124.8 (d, *J* = 3.6 Hz), 122.3 (d, *J* = 11.4 Hz), 116.4 (d, *J* = 21.7 Hz), 21.6 (s). IR (neat) ν = 3053, 2980, 1930, 1622, 1587, 1483, 1321, 1228, 1168, 1153, 1088, 1013, 973, 805, 770, 675, 588 cm⁻¹. HRMS (MALDI/DHB): calcd for C₁₆H₁₅FNO₂S [M + H]⁺: 304.0802; found, 304.0812.

*(E)-4-Methyl-N-((E)-3-(4-nitrophenyl)allylidene)benzenesulfonamide (2m).*¹⁸ 9.01 g, 91% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.80 (d, *J* = 9.1 Hz, 1H), 8.28 (d, *J* = 7.1 Hz, 2H), 7.86 (d, *J* = 6.9 Hz, 2H), 7.70 (d, *J* = 6.9 Hz, 2H), 7.52 (d, *J* = 15.8 Hz, 1H), 7.36 (d, *J* = 7.1 Hz, 2H), 7.08 (dd, *J* = 15.8, 9.1 Hz, 1H), 2.45 (s, 3H).

(E)-N-((E)-3-(4-Cyanophenyl)allylidene)-4-methylbenzenesulfonamide (2n). Yellow solid, 4.74 g, 51% yield; mp 188.9–190.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 9.2 Hz, 1H), 7.85 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 15.9 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.04 (dd, *J* = 15.9, 9.2 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.6 (s), 150.0 (s), 144.8 (s), 138.1 (s), 134.8 (s), 132.8 (s), 129.9 (s), 128.7 (s), 128.1 (s), 127.8 (s), 118.0 (s), 114.4 (s), 21.6 (s). IR (neat) ν = 3051, 2224, 1626, 1607, 1582, 1414, 1314, 1289, 1260, 1180, 1156, 1089, 1017, 997, 964, 875, 820, 805, 782, 683, 597, 558, 545 cm⁻¹. HRMS (ESI): calcd for C₁₇H₁₅N₂O₂S [M + H]⁺: 311.0849; found, 311.0847.

(E)-4-Methyl-N-((E)-3-(3-(trifluoromethyl)phenyl)allylidene)benzenesulfonamide (2o). Yellow solid, 5.51 g, 52% yield; mp 107.4–108.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 9.3 Hz, 1H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.79 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.52 (d, *J* = 15.9 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.06 (dd, *J* = 15.9, 9.3 Hz, 1H), 2.47 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.40 to -65.31 (m, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.0 (s), 151.0 (s), 144.7 (s), 135.0 (s), 134.9 (s), 131.8 (q, *J* = 32.8 Hz), 131.2 (s), 129.8 (s), 129.8 (s), 128.0 (s), 127.7 (q, *J* = 3.6 Hz), 126.5 (s), 125.1 (q, *J* = 3.8 Hz), 123.5 (q, *J* = 272.6 Hz), 21.6 (s). IR (neat) ν = 3029, 1626, 1595, 1581, 1566, 1334, 1314, 1291, 1250, 1206, 1170, 1131, 1092, 1072, 1011, 969, 803, 790, 755, 694, 679, 665, 589, 553 cm⁻¹. HRMS (ESI): calcd for C₁₇H₁₅F₃NO₂S [M + H]⁺: 354.0770; found, 354.0768.

Procedure for the Synthesis of 3. Into the mixture of diphenyl(2,2,2-trifluoroethyl)sulfonium triflate **1** (209.2 mg, 0.5 mmol), imine **2** (1 mmol), and 4 Å MS (400 mg) in dichloromethane (10 mL) was added TBAF (0.75 mL, 1 M in THF) dropwise under a N₂ atmosphere. The reaction mixture was stirred at room temperature for 1 h. After filtration, the solid was washed with DCM (10 mL). The combined organic phase was washed with water, sat. sodium bisulfite, and water in sequence and then dried over Na₂SO₄. The solvent was removed by concentration, and the residue was subjected to flash column chromatography with hexane/ethyl acetate (50:1–20:1) as the eluent to afford the final product **3**.

(2S,3R)-2-((Z)-1-Bromo-2-phenylvinyl)-1-tosyl-3-(trifluoromethyl)aziridine (3d). Yellow solid, 204.7 mg, 92% yield; mp 118.0–118.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 6.9 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.41–7.31 (m, 3H), 7.11 (s, 1H), 3.96 (d, *J* = 6.8 Hz, 1H), 3.52–3.42 (m, 1H), 2.50 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.86 (d, *J* = 5.2 Hz, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 146.0 (s), 134.0 (s), 133.0 (s), 131.4 (q, *J* = 1.2 Hz), 130.1 (s), 128.9 (s), 128.7 (s), 128.3 (s), 128.2 (s), 122.0 (q, *J* = 276.0 Hz), 111.5 (s), 46.4 (q, *J* = 1.2 Hz), 42.7 (q, *J* = 40.5 Hz), 21.7 (s). IR (neat) ν = 3068, 3022, 2975, 2926, 1595, 1493, 1447, 1428, 1365, 1338, 1283, 1198, 1186, 1163, 1104, 1088, 1021, 935, 923, 862, 813, 771, 756, 692, 675, 548, 525 cm⁻¹. HRMS (ESI): calcd for C₁₈H₁₅BrF₃NNaO₂S [M + Na]⁺: 467.9851; found, 467.9849.

(2S,3R)-2-((Z)-1-Bromo-2-(*p*-tolyl)vinyl)-1-tosyl-3-(trifluoromethyl)aziridine (3e). Yellow solid, 183.6 mg, 80% yield; mp 124.45–125.56 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.46–7.44 (m, 4H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.07 (s, 1H), 3.95 (d, *J* = 6.7 Hz, 1H), 3.51–3.38 (m, 1H), 2.51 (s, 3H), 2.37 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.90 (d, *J* = 5.2 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 146.0 (s), 138.8 (s), 133.1 (s), 131.3 (s), 131.2 (s), 130.1 (s), 128.9 (s), 128.9 (s), 128.3 (s), 122.0 (q, *J* = 276.0 Hz), 110.5 (s), 46.4 (s), 42.7 (q, *J* = 40.4 Hz), 21.7 (s), 21.3 (s). IR (neat) ν = 3030, 2978, 2922, 1609, 1597, 1512, 1438, 1364, 1342, 1284, 1181, 1166, 1150, 1090, 1021, 934, 910, 882, 869, 812, 801, 792, 751, 674, 610, 547, 527 cm⁻¹. HRMS (ESI): calcd for C₁₉H₁₇BrF₃NNaO₂S [M + Na]⁺: 482.0008; found, 482.0011.

(2S,3RS)-2-((Z)-1-Bromo-2-(4-bromo-3-methoxyphenyl)vinyl)-1-tosyl-3-(trifluoromethyl)aziridine (3f). Yellow solid, 248.4 mg, 90% yield; mp 97.3–98.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.44–7.37 (m, 3H), 7.10 (d, *J* = 3.0 Hz, 1H), 7.06 (s, 1H), 6.73 (dd, *J* = 8.8, 3.0 Hz, 1H), 3.90 (d, *J* = 6.8 Hz, 1H), 3.77 (s, 3H), 3.56–3.48 (m, 1H), 2.47 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.80 (d, *J* = 5.1 Hz, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 158.3 (s), 146.0 (s), 135.3 (s), 133.1 (s), 133.0 (s), 131.4 (s), 130.2 (s), 128.3 (s), 121.9 (q, *J* = 272.3 Hz), 115.9 (s), 115.8 (s), 114.6 (s), 114.0 (s), 55.5 (s), 46.5 (s), 42.1 (q, *J* = 40.7 Hz), 21.7 (s). IR (neat) ν = 3022, 2966, 2941, 2835, 1592, 1468, 1444, 1403, 1372, 1338, 1317, 1295, 1238, 1213, 1167, 1145, 1088, 1049, 1022, 905, 931, 865, 818, 793, 745, 678, 609, 558, 532 cm⁻¹. HRMS (ESI): calcd for C₁₉H₁₆BrF₃NNaO₃S [M + Na]⁺: 575.9062; found, 575.9034.

(2R,3R)-2-((E)-4-Bromostyryl)-1-tosyl-3-(trifluoromethyl)aziridine (3g). Yellow solid, 189.1 mg, 85% yield; mp 72.7–73.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 16.0 Hz, 1H), 5.98 (ddd, *J* = 16.0, 8.4, 1.2 Hz, 1H), 3.75 (t, *J* = 7.7 Hz, 1H), 3.49–3.36 (m, 1H), 2.44 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.01 (d, *J* = 5.7 Hz, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 145.6 (s), 137.3 (s), 134.2 (s), 133.6 (s), 131.8 (s), 130.0 (s), 128.2 (s), 128.0 (s), 122.7 (s), 122.4 (q, *J* = 275.5 Hz), 119.4 (s), 43.8 (q, *J* = 0.7 Hz), 42.3 (q, *J* = 40.1 Hz), 21.7 (s). IR (neat) ν = 3041, 2956, 1742, 1684, 1653, 1596, 1488, 1440, 1407, 1336, 1305, 1291, 1233, 1164, 1110, 1070, 1017, 1008, 938, 857, 828, 840, 755, 670, 600, 553 cm⁻¹. HRMS (ESI): calcd for C₁₈H₁₅BrF₃NNaO₂S [M + Na]⁺: 467.9851; found, 467.9845.

(2RS,3RS)-2-((E)-2-Bromostyryl)-1-tosyl-3-(trifluoromethyl)aziridine (3h). Yellow solid, 185 mg, 83% yield; mp 85.9–86.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.25–7.17 (m, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 5.92 (dd, *J* = 15.6, 8.3 Hz, 1H), 3.78

(t , J = 7.5 Hz, 1H), 3.51–3.39 (m, 1H), 2.44 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –65.98 (d, J = 5.9 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 145.6 (s), 137.1 (s), 135.1 (s), 133.5 (s), 133.0 (s), 130.0 (s), 129.9 (s), 128.0 (s), 127.5 (s), 127.1 (s), 123.7 (s), 122.4 (q, J = 275.8 Hz), 121.4 (s), 43.9 (s), 42.0 (q, J = 40.2 Hz), 21.7 (s). IR (neat) ν = 3062, 3009, 2927, 1598, 1469, 1432, 1389, 1338, 1296, 1277, 1203, 1158, 1089, 1026, 971, 947, 852, 830, 815, 757, 748, 678, 599, 569, 557, 540 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{18}\text{H}_{16}\text{BrF}_3\text{NO}_2\text{S}$ [M + H]⁺, 446.0032; found, 446.0028.

(*2RS,3RS*)-2-((*E*)-4-Chlorostyryl)-1-tosyl-3-(trifluoromethyl)-aziridine (**3i**). Yellow solid, 156.4 mg, 78% yield; mp 77.3–78.9 $^{\circ}\text{C}$. ^1H NMR (500 MHz, CDCl_3) δ 7.87 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.33–7.26 (m, 4H), 6.84 (d, J = 15.9 Hz, 1H), 5.98 (dd, J = 15.9, 8.5 Hz, 1H), 3.76 (t, J = 7.7 Hz, 1H), 3.49–3.37 (m, 1H), 2.47 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –66.04 (d, J = 5.6 Hz, 3F). ^{13}C NMR (126 MHz, CDCl_3) δ 145.6 (s), 137.2 (s), 134.5 (s), 133.8 (s), 133.7 (s), 130.0 (s), 128.9 (s), 128.0 (s), 127.9 (s), 122.4 (q, J = 275.2 Hz), 119.2 (s), 43.8 (s), 42.3 (q, J = 40.1 Hz), 21.7 (s). IR (neat) ν = 3029, 2964, 1652, 1597, 1507, 1491, 1435, 1409, 1336, 1286, 1277, 1229, 1188, 1162, 1148, 1088, 1024, 1011, 973, 867, 842, 809, 749, 682, 670, 566, 471 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{18}\text{H}_{15}\text{ClF}_3\text{NNaO}_2\text{S}$ [M + Na]⁺: 424.0356; found, 424.0361. Elemental Analysis calcd for $\text{C}_{18}\text{H}_{15}\text{ClF}_3\text{NO}_2\text{S}$: C, 53.80; H, 3.76; N, 3.49. Found: C, 53.67; H, 3.94; N, 3.50.

(*2RS,3RS*)-2-((*E*)-4-Fluorostyryl)-1-tosyl-3-(trifluoromethyl)-aziridine (**3j**). Yellow solid, 115.5 mg, 60% yield; mp 74.1–75.6 $^{\circ}\text{C}$. ^1H NMR (500 MHz, CDCl_3) δ 7.87 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.36–7.32 (m, 2H), 7.02 (t, J = 8.2 Hz, 2H), 6.85 (d, J = 15.8 Hz, 1H), 5.92 (dd, J = 15.8, 8.5 Hz, 1H), 3.77 (t, J = 7.7 Hz, 1H), 3.48–3.37 (m, 1H), 2.47 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –66.03 (d, J = 5.7 Hz, 3F), –112.27 to –112.37 (m, 1F). ^{13}C NMR (126 MHz, CDCl_3) δ 162.9 (d, J = 248.7 Hz), 145.5 (s), 137.3 (s), 133.7 (s), 131.5 (d, J = 3.3 Hz), 129.9 (s), 128.4 (d, J = 8.4 Hz), 128.0 (s), 122.5 (q, J = 275.4 Hz), 118.3 (s), 115.6 (d, J = 21.8 Hz), 43.9 (s), 42.2 (q, J = 40.1 Hz), 21.7 (s). IR (neat) ν = 3038, 2926, 1654, 1600, 1508, 1431, 1417, 1342, 1278, 1222, 1187, 1162, 1089, 1028, 970, 947, 857, 816, 747, 675, 599, 572, 545 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{18}\text{H}_{15}\text{F}_4\text{NNaO}_2\text{S}$ [M + Na]⁺, 408.0652; found, 408.0653.

(*2RS,3RS*)-2-((*E*)-3-Fluorostyryl)-1-tosyl-3-(trifluoromethyl)-aziridine (**3k**). Yellow liquid, 145 mg, 75% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.86 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.33–7.24 (m, 1H), 7.11 (d, J = 7.7 Hz, 1H), 7.06–7.02 (m, 1H), 6.97 (td, J = 8.3, 1.8 Hz, 1H), 6.83 (d, J = 15.9 Hz, 1H), 6.00 (ddd, J = 15.9, 8.3, 1.4 Hz, 1H), 3.76 (t, J = 7.7 Hz, 1H), 3.52–3.37 (m, 1H), 2.45 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –66.04 (d, J = 5.9 Hz, 3F), –112.98 (td, J = 9.1, 6.1 Hz, 1F). ^{13}C NMR (126 MHz, CDCl_3) δ 162.9 (d, J = 246.1 Hz), 145.6 (s), 137.5 (d, J = 7.7 Hz), 137.2 (s), 133.6 (s), 130.2 (d, J = 8.3 Hz), 130.0 (s), 128.1 (s), 122.6 (d, J = 2.8 Hz), 122.4 (q, J = 275.3 Hz), 120.1 (s), 115.58 (d, J = 21.4 Hz), 113.1 (d, J = 22.0 Hz), 43.6 (s), 42.28 (q, J = 40.2 Hz), 21.7 (s). IR (neat) ν = 3035, 2924, 1611, 1598, 1585, 1490, 1448, 1340, 1293, 1274, 1214, 1166, 1091, 1025, 972, 928, 872, 849, 818, 758, 746, 678, 585 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{18}\text{H}_{16}\text{F}_4\text{NO}_2\text{S}$ [M + H]⁺, 386.0832; found, 386.0830.

(*2RS,3RS*)-2-((*E*)-2-Fluorostyryl)-1-tosyl-3-(trifluoromethyl)-aziridine (**3l**). Yellow solid, 129.5 mg, 67% yield; mp 76.6–78.3 $^{\circ}\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 7.86 (d, J = 8.3 Hz, 2H), 7.41–7.33 (m, 3H), 7.30–7.20 (m, 1H), 7.10–6.97 (m, 3H), 6.09 (ddd, J = 16.1, 8.5, 1.5 Hz, 1H), 3.76 (t, J = 7.7 Hz, 1H), 3.54–3.31 (m, 1H), 2.43 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –66.00 (d, J = 5.7 Hz, 3F), –117.12 (ddd, J = 10.9, 7.5, 5.3 Hz, 1F). ^{13}C NMR (101 MHz, CDCl_3) δ 160.3 (d, J = 251.0 Hz), 145.6 (s), 133.7 (s), 131.0 (d, J = 3.2 Hz), 130.1 (d, J = 8.5 Hz), 130.0 (s), 128.1 (s), 127.7 (d, J = 3.3 Hz), 124.2 (d, J = 3.6 Hz), 123.2 (d, J = 11.9 Hz), 122.5 (q, J = 274.4 Hz), 121.2 (s), 115.8 (d, J = 21.9 Hz), 44.2 (s), 42.2 (q, J = 40.2 Hz), 21.6 (s). IR (neat) ν = 3068, 3021, 2926, 1612, 1598, 1581, 1491, 1457, 1436, 1391, 1339, 1306, 1288, 1260, 1235, 1224, 1190, 1152, 1091, 1023, 974, 943, 874, 853, 844, 823, 764, 678, 558, 525 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{18}\text{H}_{16}\text{F}_4\text{NO}_2\text{S}$ [M + H]⁺, 386.0832; found, 386.0830.

(*2RS,3RS*)-2-((*E*)-4-Nitrostyryl)-1-tosyl-3-(trifluoromethyl)aziridine (**3m**). Yellow solid, 179.5 mg, 86% yield; mp 74.5–75.6 $^{\circ}\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 8.21 (d, J = 8.8 Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 6.97 (d, J = 16.0 Hz, 1H), 6.19 (dd, J = 16.0, 8.2 Hz, 1H), 3.81 (t, J = 7.7 Hz, 1H), 3.55–3.39 (m, 1H), 2.49 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –66.00 (d, J = 5.8 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 147.6 (s), 145.8 (s), 141.4 (s), 136.1 (s), 133.5 (s), 130.0 (s), 128.1 (s), 127.3 (s), 124.1 (s), 123.5 (s), 122.3 (q, J = 275.3 Hz), 43.0 (s), 42.5 (q, J = 38.7 Hz), 21.7 (s). IR (neat) ν = 3039, 2931, 1596, 1517, 1495, 1441, 1417, 1347, 1304, 1283, 1229, 1206, 1187, 1163, 1107, 1091, 1016, 938, 867, 839, 822, 808, 759, 744, 672, 600 cm^{-1} . HRMS (MALDI/DHB): calcd for $\text{C}_{18}\text{H}_{16}\text{F}_3\text{N}_2\text{O}_4\text{S}$ [M + H]⁺, 413.0777; found, 413.0788.

4-((*E*)-2-((*2RS,3RS*)-1-Tosyl-3-(trifluoromethyl)aziridin-2-yl)vinyl)benzonitrile (**3n**). Yellow solid, 174.2 mg, 89% yield; mp 71.2–72.0 $^{\circ}\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 7.85 (d, J = 7.9 Hz, 2H), 7.60 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 7.7 Hz, 2H), 6.89 (d, J = 15.9 Hz, 1H), 6.11 (dd, J = 15.9, 8.1 Hz, 1H), 3.77 (t, J = 7.7 Hz, 1H), 3.50–3.33 (m, 1H), 2.46 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –66.58 (d, J = 5.8 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 145.8 (s), 139.6 (s), 136.5 (s), 133.5 (s), 132.5 (s), 130.0 (s), 128.1 (s), 127.2 (s), 122.7 (s), 122.3 (q, J = 276.0 Hz), 118.5 (s), 112.0 (s), 43.2 (s), 42.4 (q, J = 39.8 Hz), 21.7 (s). IR (neat) ν = 3024, 2964, 2227, 1607, 1600, 1437, 1412, 1391, 1376, 1330, 1308, 1293, 1281, 1207, 1164, 1140, 1103, 1092, 1032, 967, 948, 856, 829, 818, 750, 676, 601, 571, 556 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{19}\text{H}_{16}\text{F}_3\text{N}_2\text{O}_2\text{S}$ [M + H]⁺, 393.0879; found, 393.0878.

(*2RS,3RS*)-1-Tosyl-2-(trifluoromethyl)-3-((*E*)-3-(trifluoromethyl)styryl)aziridine (**3o**). Yellow solid, 177.3 mg, 82% yield; mp 85.3–87.0 $^{\circ}\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 7.86 (d, J = 8.3 Hz, 2H), 7.57 (s, 1H), 7.55–7.50 (m, 2H), 7.48–7.41 (m, 1H), 7.38 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 16.0 Hz, 1H), 6.06 (ddd, J = 16.0, 8.2, 1.2 Hz, 1H), 3.77 (t, J = 7.6 Hz, 1H), 3.48–3.40 (m, 1H), 2.46 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –62.90 (s, 3F), –66.05 (d, J = 5.8 Hz, 3F). ^{13}C NMR (126 MHz, CDCl_3) δ 145.7 (s), 136.9 (s), 136.0 (s), 133.6 (s), 131.2 (q, J = 32.4 Hz), 130.0 (s), 129.7 (q, J = 1.2 Hz), 129.2 (s), 128.1 (s), 125.2 (q, J = 3.8 Hz), 124.2 (q, J = 274.1 Hz), 123.4 (q, J = 3.8 Hz), 122.4 (q, J = 275.4 Hz), 120.7 (s), 43.5 (s), 42.3 (q, J = 40.2 Hz), 21.7 (s). IR (neat) ν = 3074, 3023, 2930, 1599, 1493, 1451, 1430, 1392, 1332, 1282, 1234, 1201, 1158, 1126, 1090, 1070, 1033, 984, 950, 887, 844, 821, 799, 746, 680, 599, 556 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{19}\text{H}_{15}\text{F}_6\text{NNaO}_2\text{S}$ [M + Na]⁺, 458.0620; found, 458.0611.

Procedure for the Synthesis of 4. Into a mixture of diphenyl(2,2,2-trifluoroethyl)sulfonium triflate **1** (0.2 mmol), imine **2** (0.2 mmol), and 4 Å MS (80 mg) in dichloromethane (2 mL) was added TBAF (0.25 mL, 1 M in THF) dropwise under a N_2 atmosphere. The reaction mixture was stirred at room temperature for 1 h. 4 Å MS was removed by filtration. The filtrate was concentrated to give crude aziridine, into which was added aryl amine (0.2 mmol) and DMA (2 mL) under a N_2 atmosphere. The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 2 h. After being cooled to room temperature, the solution was subjected to flash column chromatography (petroleum ether/EA = 20:1) to afford the pure product.

4-Methyl-N-((2S,E)-1,1-trifluoro-5-phenyl-3-(*p*-tolylamino)pent-4-en-2-yl)benzenesulfonamidine (**4a**). Yellow liquid, 66.3 mg, 70% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.74 (d, J = 8.2 Hz, 2H), 7.35–7.17 (m, 7H), 6.98 (d, J = 8.1 Hz, 2H), 6.67–6.50 (m, 3H), 6.03 (dd, J = 15.8, 7.4 Hz, 1H), 5.38 (d, J = 9.5 Hz, 1H), 4.41–4.28 (m, 1H), 4.22–4.04 (m, 1H), 3.68 (br, 1H), 2.38 (s, 3H), 2.22 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –71.00 (d, J = 7.2 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 144.1 (s), 143.4 (s), 137.1 (s), 135.9 (s), 133.5 (s), 129.9 (s), 129.8 (s), 128.5 (s), 128.3 (s), 128.1 (s), 127.1 (s), 126.7 (s), 125.3 (s), 124.4 (q, J = 283.9 Hz), 114.4 (s), 57.6 (q, J = 28.1 Hz), 56.3 (s), 21.5 (s), 20.4 (s). IR (neat) ν = 549.6, 568.9, 667.6, 694.2, 750.3, 811.5, 966.7, 1092.3, 1160.3, 1265.3, 1329.8, 1448.8, 1520.6, 1598.1, 1616.8, 2921.2, 3027.2, 3282.4 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{25}\text{O}_2\text{N}_2\text{F}_3\text{NaS}$ [M + Na]⁺, 497.1481; found, 497.1479.

4-Methyl-N-((2S,E)-1,1-trifluoro-5-phenyl-3-(phenylamino)pent-4-en-2-yl)benzenesulfonamide (**4b**). Yellow solid, 45.8 mg, 50%

yield; mp 151–153 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.76 (d, J = 8.2 Hz, 2H), 7.32–7.23 (m, 5H), 7.23–7.14 (m, 4H), 6.77 (t, J = 7.3 Hz, 1H), 6.67–6.56 (m, 3H), 6.05 (dd, J = 15.7, 7.0 Hz, 1H), 5.74 (d, J = 6.6 Hz, 1H), 4.50–4.39 (m, 1H), 4.22–4.11 (m, 1H), 3.93 (d, J = 8.6 Hz, 1H), 2.36 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –70.92 (d, J = 7.3 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 145.7 (s), 144.2 (s), 137.0 (s), 135.8 (s), 133.7 (s), 129.8 (s), 129.4 (s), 128.6 (s), 128.2 (s), 127.1 (s), 126.7 (s), 125.0 (s), 124.3 (q, J = 281.5 Hz), 119.0 (s), 114.1 (s), 57.5 (q, J = 28.2 Hz), 56.0 (s), 21.5 (s). IR (neat) ν = 547.6, 570.6, 688.8, 704.2, 765.1, 812.2, 959.9, 970.8, 1091.8, 1155.5, 1187.5, 1266.7, 1327.3, 1349.1, 1448.1, 1497.6, 1602.2, 2924.6, 324.91, 3363.5, 3413.8 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{24}\text{H}_{22}\text{O}_2\text{N}_2\text{F}_3\text{S}$ [M – H]⁺, 459.1354; found, 459.1356.

N–((2*R*,3*S*,*E*)-3–(4-Chlorophenyl)amino)-1,1,1-trifluoro-5-phenylpent-4-en-2-yl)-4-methylbenzenesulfonamide (**4c**). Yellow solid, 64.3 mg, 65% yield; mp 120–122 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.73 (d, J = 8.2 Hz, 2H), 7.35–7.18 (m, 7H), 7.10 (d, J = 8.8 Hz, 2H), 6.66–6.49 (m, 3H), 6.02 (dd, J = 15.9, 7.0 Hz, 1H), 5.53 (d, J = 9.8 Hz, 1H), 4.40–4.32 (m, 1H), 4.19–4.07 (m, 1H), 3.94 (s, 1H), 2.37 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –71.01 (d, J = 7.3 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 144.4 (s), 144.3 (s), 136.9 (s), 135.6 (s), 133.7 (s), 129.8 (s), 129.2 (s), 128.6 (s), 128.2 (s), 127.0 (s), 126.7 (s), 124.8 (s), 124.2 (q, J = 283.8 Hz), 123.4 (s), 115.2 (s), 57.6 (q, J = 28.9 Hz), 55.9 (s), 21.5 (s). IR (neat) ν = 502.81, 549.39, 568.84, 666.12, 692.63, 732.87, 752.07, 814.30, 909.86, 967.02, 1004.82, 1091.91, 1159.77, 1185.36, 1266.44, 1328.80, 1403.43, 1448.87, 1493.68, 1598.89, 2923.74, 3028.61, 3275.04 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{24}\text{H}_{23}\text{O}_2\text{N}_2\text{ClF}_3\text{S}$ [M + H]⁺, 495.1115; found, 495.1115.

4-Methyl-N–((2*S*,*E*)-1,1,1-trifluoro-5-(*p*-tolyl)-3-(*p*-tolylamino)-pent-4-en-2-yl)benzenesulfonamide (**4d**). Yellow liquid, 49.7 mg, 51% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.75 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.98 (d, J = 8.1 Hz, 2H), 6.61–6.48 (m, 3H), 5.97 (dd, J = 15.6, 7.3 Hz, 1H), 5.52 (d, J = 9.7 Hz, 1H), 4.42–4.27 (m, 1H), 4.20–4.05 (m, 1H), 3.69 (br, 1H), 2.38 (s, 3H), 2.32 (s, 3H), 2.23 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –70.93 (d, J = 7.2 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 144.0 (s), 143.3 (s), 138.1 (s), 137.1 (s), 133.6 (s), 133.0 (s), 129.9 (s), 129.8 (s), 129.3 (s), 128.4 (s), 127.1 (s), 126.6 (s), 124.4 (q, J = 283.7 Hz), 124.0 (s), 114.5 (s), 57.38 (q, J = 26.8 Hz), 56.6 (s), 21.5 (s), 21.2 (s), 20.4 (s). IR (neat) ν = 548.9, 667.2, 677.3, 810.5, 919.8, 968.6, 1092.2, 1160.2, 1265.7, 1330.0, 1496.6, 1520.6, 1539.9, 1616.6, 2921.6, 3025.2, 3282.6 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{26}\text{H}_{27}\text{O}_2\text{N}_2\text{F}_3\text{NaS}$ [M + Na]⁺, 511.1638; found, 511.1636.

N–((2*S*,*E*)-3–(4-Chlorophenyl)amino)-1,1,1-trifluoro-5-(*p*-tolyl)-pent-4-en-2-yl)-4-methylbenzenesulfonamide (**4e**). Yellow solid, 60.1 mg, 59% yield; mp 120–122 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.73 (d, J = 8.2 Hz, 2H), 7.27–7.21 (m, 2H), 7.21–7.15 (m, 2H), 7.14–7.06 (m, 4H), 6.64–6.43 (m, 3H), 5.96 (dd, J = 15.7, 7.7 Hz, 1H), 5.40 (d, J = 9.9 Hz, 1H), 4.39–4.25 (m, 1H), 4.17–4.07 (m, 1H), 3.90 (s, 1H), 2.38 (s, 3H), 2.32 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –70.81 (d, J = 6.9 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 144.3 (s), 144.2 (s), 138.3 (s), 136.9 (s), 133.9 (s), 132.8 (s), 129.8 (s), 129.3 (s), 129.2 (s), 127.0 (s), 126.6 (s), 124.3 (q, J = 283.7 Hz), 123.6 (s), 123.3 (s), 115.2 (s), 57.4 (q, J = 27.7 Hz), 56.4 (s), 21.5 (s), 21.2 (s). IR (neat) ν = 548.41, 566.40, 666.20, 732.15, 813.83, 911.39, 968.56, 1091.55, 1159.08, 1266.10, 1328.43, 1451.36, 1493.31, 1598.54, 2923.38 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{25}\text{O}_2\text{N}_2\text{ClF}_3\text{S}$ [M + H]⁺, 509.1272; found, 509.1272.

4-Methyl-N–((2*S*,*E*)-1,1,1-trifluoro-3-(phenylamino)-5-(*p*-tolyl)-pent-4-en-2-yl)benzenesulfonamide (**4f**). Yellow liquid, 42.6 mg, 45% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.75 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.20–7.13 (m, 4H), 7.09 (d, J = 7.9 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.9 Hz, 2H), 6.57 (d, J = 15.7 Hz, 1H), 5.98 (dd, J = 15.9, 7.4 Hz, 1H), 5.38 (d, J = 9.9 Hz, 1H), 4.44–4.33 (m, 1H), 4.20–4.09 (m, 1H), 3.83 (d, J = 7.1 Hz, 1H), 2.38 (s, 3H), 2.32 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –70.79 (d, J = 7.4 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 145.6 (s), 144.1 (s), 138.2 (s), 137.0 (s), 133.9 (s), 132.9 (s), 129.8 (s), 129.4 (s), 129.3 (s),

127.1 (s), 126.6 (s), 124.4 (q, J = 283.7 Hz), 123.6 (s), 119.0 (s), 114.1 (s), 57.2 (q, J = 28.8 Hz), 56.4 (s), 21.5 (s), 21.2 (s). IR (neat) ν = 549.0, 571.0, 666.1, 690.4, 714.9, 750.2, 812.3, 919.9, 969.0, 1092.7, 1160.2, 1266.2, 1328.3, 1436.5, 1498.5, 1513.3, 1602.2, 2922.1, 3026.8, 3052.0, 3283.1 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{25}\text{O}_2\text{N}_2\text{F}_3\text{NaS}$ [M + Na]⁺, 497.1481; found, 497.1481.

N–((2*S*,*E*)-3–((4-Chlorophenyl)amino)-1,1,1-trifluoro-5-(3-methoxyphenyl)pent-4-en-2-yl)-4-methylbenzenesulfonamide (**4g**). Yellow liquid, 40.8 mg, 39% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.25–7.16 (m, 3H), 7.09 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 7.7 Hz, 1H), 6.82–6.77 (m, 2H), 6.58–6.51 (m, 3H), 6.00 (dd, J = 15.8, 7.0 Hz, 1H), 5.79–5.65 (m, 1H), 4.42–4.31 (m, 1H), 4.17–4.06 (m, 1H), 3.99 (br, 1H), 3.77 (s, 3H), 2.36 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –70.93 (d, J = 6.9 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 159.8 (s), 144.3 (s), 144.3 (s), 137.0 (s), 136.8 (s), 133.8 (s), 129.8 (s), 129.6 (s), 129.2 (s), 127.0 (s), 124.9 (s), 124.2 (q, J = 283.7 Hz), 123.6 (s), 119.3 (s), 115.2 (s), 113.9 (s), 112.1 (s), 57.5 (q, J = 28.3 Hz), 56.1 (s), 55.2 (s), 21.5 (s). IR (neat) ν = 522.4, 549.2, 568.8, 667.1, 703.9, 814.7, 969.8, 1005.1, 1092.1, 1159.1, 1185.0, 1266.5, 1289.8, 1328.0, 1493.0, 1599.2, 2923.6, 3031.4, 3280.6 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{23}\text{O}_3\text{N}_2\text{F}_3\text{ClS}$ [M – H]⁺, 523.1070; found, 523.1067.

N–((2*S*,*E*)-5-(4-Chlorophenyl)-1,1,1-trifluoro-3-(phenylamino)-pent-4-en-2-yl)-4-methylbenzenesulfonamide (**4h**). Yellow liquid, 62.2 mg, 63% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.75 (d, J = 8.1 Hz, 2H), 7.25–7.11 (m, 8H), 6.76 (t, J = 7.3, 1H), 6.62 (d, J = 8.0 Hz, 2H), 6.54 (d, J = 15.8 Hz, 1H), 6.08–5.97 (m, 2H), 4.47 (br, 1H), 4.23–4.10 (m, 1H), 4.02 (br, 1H), 2.36 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –71.01 (d, J = 7.2 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 145.7 (s), 144.2 (s), 144.3 (s), 137.0 (s), 136.8 (s), 133.8 (s), 129.8 (s), 129.6 (s), 129.2 (s), 127.0 (s), 124.9 (s), 124.2 (q, J = 283.7 Hz), 123.6 (s), 119.3 (s), 115.2 (s), 113.9 (s), 112.1 (s), 57.5 (q, J = 28.3 Hz), 56.1 (s), 55.2 (s), 21.5 (s). IR (neat) ν = 522.4, 549.2, 568.8, 667.1, 703.9, 814.7, 969.8, 1005.1, 1092.1, 1159.1, 1185.0, 1266.5, 1289.8, 1328.0, 1493.0, 1599.2, 2923.6, 3031.4, 3280.6 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{23}\text{O}_3\text{N}_2\text{F}_3\text{ClS}$ [M – H]⁺, 523.1070; found, 523.1067.

N–((2*S*,*E*)-5-(4-Chlorophenyl)-3–((4-chlorophenyl)amino)-1,1,1-trifluoropent-4-en-2-yl)-4-methylbenzenesulfonamide (**4i**). Yellow liquid, 69.8 mg, 66% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.22–7.12 (m, 6H), 7.10–7.04 (m, 2H), 6.54–6.47 (m, 3H), 6.05 (d, J = 9.5 Hz, 1H), 5.99 (dd, J = 16.3, 6.5 Hz, 1H), 4.43–4.36 (m, 1H), 4.18–4.09 (m, 1H), 4.07 (d, J = 9.1 Hz, 1H), 2.35 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –71.07 (d, J = 7.2 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 144.3 (s), 144.2 (s), 136.8 (s), 134.1 (s), 134.0 (s), 132.6 (s), 129.8 (s), 129.3 (s), 128.8 (s), 127.9 (s), 127.0 (s), 125.4 (s), 124.2 (q, J = 284.1 Hz), 123.7 (s), 115.2 (s), 57.5 (q, J = 28.4 Hz), 56.1 (s), 21.5 (s). IR (neat) ν = 501.96, 548.73, 664.86, 734.58, 813.27, 910.62, 968.00, 1012.62, 1091.48, 1159.19, 1185.11, 1264.87, 1328.55, 1404.26, 1453.88, 1492.41, 1598.33, 2924.10 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{24}\text{H}_{22}\text{O}_2\text{N}_2\text{Cl}_2\text{F}_3\text{S}$ [M + H]⁺, 529.0726; found, 529.0726.

4-Methyl-N–((2*S*,*E*)-1,1,1-trifluoro-5-(4-fluorophenyl)-3-(*p*-tolylamino)pent-4-en-2-yl)benzenesulfonamide (**4j**). Yellow liquid, 60.1 mg, 61% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.74 (d, J = 8.2 Hz, 2H), 7.31–7.19 (m, 4H), 7.07–6.90 (m, 4H), 6.65–6.48 (m, 3H), 5.97 (dd, J = 15.6, 7.4 Hz, 1H), 5.42 (d, J = 9.6 Hz, 1H), 4.40 (br, 1H), 4.19–4.04 (m, 1H), 3.81 (d, J = 8.1 Hz, 1H), 2.39 (s, 3H), 2.22 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –71.05 (d, J = 7.3 Hz, 3F), –112.22 to –114.99 (m, 1F). ^{13}C NMR (101 MHz, CDCl_3) δ 162.6 (d, J = 247.6 Hz), 144.1 (s), 143.3 (s), 137.1 (s), 132.2 (s), 132.1 (d, J = 3.3 Hz), 129.9 (s), 129.8 (s), 128.4 (s), 128.3 (d, J = 8.1 Hz), 127.0 (s), 125.1 (s), 124.3 (q, J = 284.62 Hz), 115.4 (d, J = 21.7 Hz), 114.4 (s), 57.5 (q, J = 28.1 Hz), 56.2 (s), 21.5 (s), 20.4 (s). IR (neat) ν = 549.1, 586.0, 667.3, 705.3, 811.9, 920.0, 968.1, 1092.6, 1159.3, 1230.4, 1265.7, 1329.9, 1456.1, 1508.5, 1520.3, 1558.5, 1616.7, 1716.7, 2922.4, 3031.8, 3283.2 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{24}\text{O}_2\text{N}_2\text{F}_4\text{NaS}$ [M + Na]⁺, 515.1387; found, 515.1387.

4-Methyl-N–((2*S*,*E*)-1,1,1-trifluoro-5-(4-fluorophenyl)-3-(phenylamino)pent-4-en-2-yl)benzenesulfonamide (**4k**). Yellow liquid, 56.4 mg, 59% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.74 (d, J = 8.1 Hz,

2H), 7.30–7.22 (m, 4H), 7.18 (t, J = 7.8 Hz, 2H), 6.97 (t, J = 8.5 Hz, 2H), 6.77 (t, J = 7.2 Hz, 1H), 6.68–6.52 (m, 3H), 5.99 (dd, J = 15.6, 7.0 Hz, 1H), 5.38 (d, J = 9.9 Hz, 1H), 4.45–4.35 (m, 1H), 4.22–4.07 (m, 1H), 3.83 (d, J = 8.6 Hz, 1H), 2.39 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –70.97 (d, J = 7.3 Hz, 3F), –112.48 to –114.78 (m, 1F). ^{13}C NMR (101 MHz, CDCl_3) δ 162.6 (d, J = 247.6 Hz), 145.7 (s), 144.2 (s), 137.0 (s), 132.3 (s), 132.0 (d, J = 3.3 Hz), 129.8 (s), 129.4 (s), 128.3 (d, J = 8.1 Hz), 127.0 (s), 124.9 (s), 124.3 (q, J = 283.4 Hz), 119.0 (s), 115.5 (d, J = 21.7 Hz), 114.0 (s), 57.6 (q, J = 28.1 Hz), 55.8 (s), 21.5 (s). IR (neat) ν = 548.8, 570.8, 665.7, 691.1, 750.9, 813.0, 919.6, 968.2, 1092.9, 1159.0, 1185.1, 1229.1, 1266.0, 1328.0, 1508.2, 1602.2, 2924.5, 3054.1, 3282.6 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{24}\text{H}_{22}\text{O}_2\text{N}_2\text{F}_4\text{NaS}$ [M + Na]⁺, 501.1230; found, 501.1231

N–((2S,E)–3–((4–Chlorophenyl)amino)–1,1,1–trifluoro–5–(4–fluorophenyl)pent–4–en–2–yl)–4–methylbenzenesulfonamide (4l). Yellow solid, 64.5 mg, 63% yield; mp 109–111 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.73 (d, J = 8.3 Hz, 2H), 7.25–7.14 (m, 4H), 7.11–7.04 (m, 2H), 6.93 (t, J = 8.6 Hz, 2H), 6.56–6.49 (m, 3H), 6.01–5.90 (m, 2H), 4.42–4.34 (m, 1H), 4.16–4.09 (m, 1H), 4.05 (d, J = 9.0 Hz, 1H), 2.36 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –71.02 (d, J = 7.3 Hz, 3F), –113.26 to –113.35 (m, 1F). ^{13}C NMR (101 MHz, CDCl_3) δ 162.6 (d, J = 248.0 Hz), 144.3 (s), 136.8 (s), 132.5 (s), 131.9 (d, J = 3.2 Hz), 129.8 (s), 129.2 (s), 128.3 (d, J = 8.1 Hz), 127.0 (s), 124.5 (s), 124.2 (q, J = 283.7 Hz), 123.6 (s), 123.5 (s), 115.5 (d, J = 21.7 Hz), 115.1 (s), 57.64 (q, J = 29.3 Hz), 55.9 (s), 21.5 (s). IR (neat) ν = 548.89, 566.93, 666.25, 733.40, 814.07, 847.17, 910.10, 968.20, 1092.35, 1158.91, 1184.87, 1231.77, 1265.93, 1291.00, 1328.77, 1403.59, 1452.45, 1493.76, 1508.90, 1600.23, 2924.41, 3277.96 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{24}\text{H}_{22}\text{O}_2\text{N}_2\text{ClF}_4\text{S}$ [M + H]⁺, 513.1021; found, 513.1021.

(E)–*N*–(3–(Butylamino)–1,1,1–trifluoro–5–(p–tolyl)pent–4–en–2–yl)–4–methylbenzenesulfonamide (4m). Yellow solid, 45.2 mg, 50% yield; mp 71.76–72.31 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.74 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.15–7.09 (m, 4H), 6.47 (d, J = 15.8 Hz, 1H), 5.69 (dd, J = 15.8, 8.8 Hz, 1H), 3.89 (qd, J = 7.9, 2.3 Hz, 1H), 3.59 (dd, J = 8.8, 2.0 Hz, 1H), 2.65–2.40 (m, 2H), 2.36 (s, 3H), 2.33 (s, 3H), 1.41–1.35 (m, 2H), 1.32–1.25 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H). ^{19}F NMR (376 MHz, CDCl_3) –72.79 (d, J = 7.9 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 143.6 (s), 138.0 (s), 137.8 (s), 133.2 (s), 133.1 (s), 129.6 (s), 129.2 (s), 127.0 (s), 126.6 (s), 125.84 (s), 124.6 (q, J = 283.3 Hz), 58.5 (s), 58.1 (q, J = 29.1 Hz), 46.9 (s), 32.1 (s), 21.5 (s), 21.2 (s), 20.2 (s), 13.9 (s). IR (neat) ν = 3333.4, 3025.1, 2985.5, 2930.8, 2863.2, 1598.7, 1468.8, 1353.6, 1273.0, 1171.6, 1134.3, 1094.6, 967.4, 815.9, 800.3, 685.7, 576.2, 561.7, 550.9, 464.1 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{23}\text{H}_{28}\text{O}_2\text{N}_2\text{F}_3\text{S}$ [M – H][–], 453.1829; found, 453.1829.

Procedure for the Synthesis of 5. Into the mixture of diphenyl(2,2,2-trifluoroethyl)sulfonium triflate 1 (209.2 mg, 0.5 mmol), imine 2a (285.1 mg, 1 mmol), and 4 Å MS (400 mg) in dichloromethane (5 mL) was added TBAF (0.75 mL, 1 M in THF) dropwise under a N_2 atmosphere. The reaction mixture was stirred at room temperature for 1 h. 4 Å MS was removed by filtration. The filtrate was concentrated to give crude aziridine, into which was added sodium methoxide (135.1 mg, 2.5 mmol), 15–Crown–5 (110.1 mg, 0.5 mmol), and THF (5 mL) under a N_2 atmosphere. The reaction mixture was stirred at 80 °C for 2 h. After being cooled to room temperature, the solution was subjected to flash column chromatography (petroleum ether/EA = 20:1) to afford the pure product.

N–Methyl–*N*–((2S,3R,E)–1,1,1–trifluoro–3–methoxy–5–phenylpent–4–en–2–yl)benzenesulfonamide (5a). Yellow solid, 89.8 mg, 45% yield; ^1H NMR (400 MHz, CDCl_3) δ 7.71 (d, J = 8.2 Hz, 2H), 7.35–7.22 (m, SH), 7.18 (d, J = 8.0 Hz, 2H), 6.58 (d, J = 15.9 Hz, 1H), 5.82 (dd, J = 15.9, 8.0 Hz, 1H), 5.49 (d, J = 9.3 Hz, 1H), 4.09 (d, J = 8.0 Hz, 1H), 4.04–3.92 (m, 1H), 3.29 (s, 3H), 2.33 (s, 3H). ^{19}F NMR (282 MHz, CDCl_3) δ –73.34 (d, J = 7.4 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 143.6 (s), 137.9 (s), 135.5 (s), 135.1 (s), 129.6 (s), 128.6 (s), 128.4 (s), 126.9 (s), 126.9 (s), 124.0 (q, J = 283.5 Hz), 123.9 (s), 78.0 (q, J = 1.9 Hz), 58.3 (q, J = 30.3 Hz), 56.6 (s), 21.5 (s). IR (neat) ν = 549.0, 570.1, 660.9, 690.0, 757.5, 844.9, 964.3, 1088.3, 1135.2, 1165.2, 1273.9, 1351.8, 1450.8, 1466.3, 1495.9, 1597.1, 2968.1, 3027.9,

3300.2. HRMS (ESI): calcd for $\text{C}_{19}\text{H}_{19}\text{O}_3\text{NF}_3\text{S}$ [M – H][–], 398.1038; found, 398.1038.

(E)–*N*–(3–(Benzyloxy)–1,1,1–trifluoro–5–phenylpent–4–en–2–yl)–4–methylbenzenesulfonamide (5b). Yellow solid, 118.7 mg, 50% yield; mp 119.8–121.5 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.70 (d, J = 8.3 Hz, 2H), 7.39–7.22 (m, 10H), 7.18 (d, J = 8.0 Hz, 2H), 6.58 (d, J = 15.9 Hz, 1H), 5.92 (dd, J = 15.9, 8.2 Hz, 1H), 5.53 (s, 1H), 4.59 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.5 Hz, 1H), 4.33 (d, J = 8.2 Hz, 1H), 4.03 (q, J = 6.6 Hz, 1H), 2.34 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ –72.99 (d, J = 7.4 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 143.7 (s), 137.8 (s), 136.8 (s), 135.5 (s, J = 11.4 Hz), 135.4 (s), 129.6 (s), 128.6 (s), 128.53 (s), 128.50 (s), 128.1 (d, J = 1.6 Hz), 128.0 (s), 126.97 (s), 126.96 (s), 124.02 (q, J = 283.9 Hz), 123.9 (s), 75.7 (s), 70.6 (s), 58.50 (q, J = 30.2 Hz), 21.5 (s). IR (neat) ν = 3289.3, 3065.6, 3027.0, 2922.8, 2876.6, 1597.1, 1495.3, 1429.5, 1340.7, 1272.0, 1242.4, 1174.7, 1125.8, 1049.5, 1011.2, 870.1, 755.7, 695.5, 663.5, 616.9, 550.6, 499.0 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{25}\text{H}_{23}\text{O}_3\text{NF}_3\text{S}$ [M – H][–], 474.1356; found, 474.1348.

Procedure for the Synthesis of 6. The mixture of compound 5b (94.8 mg, 0.2 mmol) and palladium on activated carbon (30 mg, 10%) in methanol (15 mL) was stirred at room temperature for 24 h under a hydrogen atmosphere (30 atm). The solid was removed by filtration. The filtrate was subjected to flash column chromatography (petroleum ether/EA = 10:1) to afford the pure product.

4–Methyl–*N*–((2S,3R)–1,1,1–trifluoro–3–hydroxy–5–phenylpentan–2–yl)benzenesulfonamide (6). White solid, 65.8 mg, 84% yield; mp 115.3–116.5 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.73 (d, J = 8.3 Hz, 2H), 7.32–7.15 (m, 5H), 7.16–7.05 (m, 2H), 5.81 (d, J = 9.1 Hz, 1H), 4.12–3.97 (m, 1H), 3.88 (p, J = 8.0 Hz, 1H), 2.75–2.57 (m, 2H), 2.42 (d, J = 4.5 Hz, 1H), 2.35 (s, 3H), 1.86–1.74 (m, 1H), 1.74–1.60 (m, 1H). ^{19}F NMR (376 MHz, CDCl_3) δ –73.22 (d, J = 7.8 Hz, 3F). ^{13}C NMR (101 MHz, CDCl_3) δ 143.8 (s), 140.5 (s), 137.8 (s), 129.6 (s), 128.5 (s), 128.3 (s), 126.9 (s), 126.1 (s), 124.5 (q, J = 281.9 Hz), 67.5 (s), 57.6 (q, J = 29.1 Hz), 35.3 (s), 31.4 (s), 21.5 (s). IR (neat) ν = 3550.8, 3319.8, 3064.8, 2951.9, 2869.6, 1599.6, 1496.4, 1456.7, 1384.1, 1345.3, 1308.4, 1274.5, 1166.2, 1139.5, 1122.7, 922.3, 815.3, 724.4, 703.3, 670.3, 578.3, 549.8, 475.0 cm^{-1} . HRMS (ESI): calcd for $\text{C}_{18}\text{H}_{19}\text{O}_3\text{NF}_3\text{S}$ [M – H][–], 386.1043; found, 386.1039.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: [10.1021/acs.joc.7b01261](https://doi.org/10.1021/acs.joc.7b01261).

Copies of ^1H / ^{19}F / ^{13}C NMR spectra of compounds and crystal structures of compounds 3m, 4b, and 5a (PDF)
Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: jlin@sioc.ac.cn (J.-H.L.).

*E-mail: jchxiao@sioc.ac.cn (J.-C.X.).

*E-mail: zhengxing5018@yahoo.com (X.Z.).

ORCID

Jin-Hong Lin: [0000-0002-7000-9540](https://orcid.org/0000-0002-7000-9540)

Ji-Chang Xiao: [0000-0001-9679-3292](https://orcid.org/0000-0001-9679-3292)

Author Contributions

[§] Q.–x.H. and Q.–t.Z. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank National Basic Research Program of China (2015CB931900, 2012CBA01200), the National Natural Science Foundation (21421002, 21472222, 21502214, 21672242, 81273537), the Chinese Academy of Sciences

(XDA02020105, XDA02020106), the Science and Technology Commission of Shanghai Municipality (15DZ1200102), the Key Research Program of Frontier Sciences (CAS) (QYZDJ-SSW-SLH049), the Key Project of Hunan Province Science and Technology Department (2016DK2001), the Key Project of Hunan Provincial Education Department (No. 17A190), and the Zhengxiang Scholar Program of the University of South China for financial support.

■ REFERENCES

- (1) (a) Lucet, D.; Le Gall, T.; Mioskowski, C. *Angew. Chem., Int. Ed.* **1998**, *37*, 2580–2627. (b) Viso, A.; Fernandez de la Pradilla, R.; Garcia, A.; Flores, A. *Chem. Rev.* **2005**, *105*, 3167–3196. (c) Kotti, S. R. S. S.; Timmons, C.; Li, G. *Chem. Biol. Drug Des.* **2006**, *67*, 101–114.
- (d) Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V. *Chem. Rev.* **2011**, *111*, 5506–5568.
- (e) Zhu, Y.; Cornwall, R. G.; Du, H.; Zhao, B.; Shi, Y. *Acc. Chem. Res.* **2014**, *47*, 3665–3678.
- (2) (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37*, 320–330. (b) Ojiima, I. *Fluorine in Medicinal Chemistry and Chemical Biology*; Blackwell Publishing: Chichester, 2009. (c) Qiu, X.-L.; Yue, X.; Qing, F.-L. In *Chiral Drugs: Chemistry and Biological Action*; Lin, G.-Q., You, Q.-D., Cheng, J.-F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 195–251. (d) Kirsch, P. *Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications*, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2013.
- (3) Apostolakis, S.; Oeff, M.; Tebbe, U.; Fabritz, L.; Breithardt, G.; Kirchhof, P. *Expert Opin. Pharmacother.* **2013**, *14*, 347–357.
- (4) (a) Shih, N.-Y.; Shue, H.-J.; Reichard, G. A.; Paliwal, S.; Blythin, D. J.; Piwinski, J. J.; Xiao, D.; Chen, X. WO2001044200A2. (b) Reichard, G. A.; Stengone, C.; Paliwal, S.; Mergelsberg, I.; Majmundar, S.; Wang, C.; Tiberti, R.; McPhail, A. T.; Piwinski, J. J.; Shih, N.-Y. *Org. Lett.* **2003**, *5*, 4249–4251.
- (5) (a) Cardona, F.; Goti, A. *Nat. Chem.* **2009**, *1*, 269–275. (b) de Figueiredo, R. M. *Angew. Chem., Int. Ed.* **2009**, *48*, 1190–1193. (c) Zhao, B.; Peng, X.; Zhu, Y.; Ramirez, T. A.; Cornwall, R. G.; Shi, Y. *J. Am. Chem. Soc.* **2011**, *133*, 20890–20900. (d) Muniz, K.; Martinez, C. *J. Org. Chem.* **2013**, *78*, 2168–2174. (e) Olson, D. E.; Su, J. Y.; Roberts, D. A.; Du Bois, J. *J. Am. Chem. Soc.* **2014**, *136*, 13506–13509. (f) Zhu, X.; Du, H. *Org. Lett.* **2015**, *17*, 3106–3109. (g) Fava, E.; Millet, A.; Nakajima, M.; Loescher, S.; Rueping, M. *Angew. Chem., Int. Ed.* **2016**, *55*, 6776–6779. (h) Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. *J. Am. Chem. Soc.* **2017**, *139*, 4354–4357.
- (6) (a) Katagiri, T.; Katayama, Y.; Taeda, M.; Ohshima, T.; Iguchi, N.; Uneyama, K. *J. Org. Chem.* **2011**, *76*, 9305–9311. (b) Takehiro, Y.; Hirotaki, K.; Takeshita, C.; Furuno, H.; Hanamoto, T. *Tetrahedron* **2013**, *69*, 7448–7454. (c) Waki, M.; Katagiri, T.; Matsuno, K.; Miyachi, H. *Tetrahedron Lett.* **2014**, *55*, 6915–6918.
- (7) Moens, M.; De Kimpe, N.; D'hooghe, M. *J. Org. Chem.* **2014**, *79*, 5558–5568.
- (8) Sánchez-Roselló, M.; Delgado, O.; Mateu, N.; Trabanco, A. A.; Van Gool, M.; Fustero, S. *J. Org. Chem.* **2014**, *79*, 5887–5894.
- (9) Wu, L.; Xie, C.; Mei, H.; Dai, Y.; Han, J.; Soloshonok, V. A.; Pan, Y. *J. Org. Chem.* **2015**, *80*, 3187–3194.
- (10) Orcel, U.; Waser, J. *Angew. Chem., Int. Ed.* **2016**, *55*, 12881–12885.
- (11) Duan, Y.; Zhou, B.; Lin, J.-H.; Xiao, J.-C. *Chem. Commun.* **2015**, *51*, 13127–13130.
- (12) (a) Ji, Y.-L.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. *Org. Chem. Front.* **2014**, *1*, 1280–1284. (b) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. *Org. Lett.* **2015**, *17*, 532–535. (c) Duan, Y.; Lin, J.-H.; Xiao, J.-C.; Gu, Y. C. *Org. Lett.* **2016**, *18*, 2471–2474. (d) Ji, Y.-L.; Luo, J.-J.; Lin, J.-H.; Xiao, J.-C.; Gu, Y. C. *Org. Lett.* **2016**, *18*, 1000–1003.
- (13) Summary of Data CCDC 1418098.
- (14) Summary of Data CCDC 1545327.
- (15) (a) Burchak, O. N.; Py, S. *Tetrahedron* **2009**, *65*, 7333–7356. (b) Donohoe, T. J.; Callens, C. K. A.; Flores, A.; Lacy, A. R.; Rathi, A. H. *Chem. - Eur. J.* **2011**, *17*, 58–76.
- (16) Summary of Data CCDC 1418089.
- (17) Yamada, K.-i.; Umeki, H.; Maekawa, M.; Yamamoto, Y.; Akindele, T.; Nakano, M.; Tomioka, K. *Tetrahedron* **2008**, *64*, 7258–7265.
- (18) Chawla, R.; Singh, A. K.; Yadav, L. D. S. *Tetrahedron Lett.* **2014**, *55*, 3553–3556.