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pKa Prediction for Acidic Phosphorus-Containing
Compounds Using Multiple Linear Regression with

Computational Descriptors
Donghai Yu, Ruobing Du, and Ji-Chang Xiao*

Ninety-six acidic phosphorus-containing molecules with pK,
1.88 to 6.26 were collected and divided into training and test
sets by random sampling. Structural parameters were obtained
by density functional theory calculation of the molecules. The
relationship between the experimental pK, values and struc-
tural parameters was obtained by multiple linear regression fit-
ting for the training set, and tested with the test set; the R?
values were 0.974 and 0.966 for the training and test sets,

Introduction

Acidic phosphorus-containing compounds are an important
class of chemicals, which are widely used as extractants in
hydrometallurgy, especially in rare-earth extraction and separa-
tion. The extractability of an extractant is greatly influenced by
its acid dissociation constant, i.e. pK,. Generally, the lower the
pK, of the extractant, the higher the extraction rate. For exam-
ple, the order of the pK, values of di(2-ethylhexyl)phosphinic
acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester,
and di(2-ethylhexyl) phosphoric acid is the opposite of the
order of their lanthanide extraction rates.'?! Additionally, the
pK, is a fundamental property of acidic compounds; it is
mainly used to measure proton dissociation ability, and is
important to acidity-related properties such as biocompatibil-
ity and activity.>~”!

The pK, is measured experimentally by acid-base titration,
and the results are affected by the temperature, solvent, con-
centration, and other experimental conditions. Even for the
same molecule measured under similar or identical conditions,
different pK, values are frequently reported. Theoretical meth-
ods are therefore employed to explore the relationships
between pK, and molecular structure®”~*) Two techniques
have been developed for this purpose, i.e., first-principle calcu-
lation and the quantitative structure-property relationship
(QSPR) approach. First-principle calculation are based on ther-
modynamic energies; the Gibbs free energies of the deproto-
nation reaction are calculated, and the pK, is then obtained
using a formula.”"" This method depends on the deprotona-
tion thermodynamic process, and is based on basic physical
concepts.” " Theoretically, first-principle calculation can be
used to analyze any deprotonation process of any molecule.
However, to achieve sufficient accuracy is a big challenge. For
example, an accuracy of =1 pK, unit is needed to control
errors in the Gibbs free energy changes of deprotonation
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respectively. This regression equation, which quantitatively
describes the influence of structural parameters on pK, and
can be used to predict pK;, values of similar structures, is sig-
nificant for the design of new acidic phosphorus-containing
extractants. © 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24381

within £1.36 kcal/mol, but the errors in ion solvation are
roughly 2 to 5 kcal/mol.’®!

The QSPR approach is based on linear free energy analysis
and relies on molecular descriptors. Generally, three steps are
involved: first, choosing training and test sets, and listing the
pK, values and molecule descriptors, e.g., bond lengths, ener-
gies, and charges; second, fitting equations to the relevant pK,
values and structural parameters in the training set; and third,
examining the equations with the test set.'*™1 An effective
relationship will be established if the equation is verified by
the test set, and it can be used to predict the pK, values of
molecules with similar structures. In early QSPR approaches, a
fitted numerical equation based on experimental molecular
descriptors was used to represent the relationship between
experimental data; some descriptors are difficult to obtain,
therefore this approach is not useful. Additionally, abundant
data are needed for fitting, which are suitable for similar struc-
tures, but not available for different types of molecule. Based
on the respective characteristics of these two techniques,
quantum QSPR methods have been developed in recent years,
in which the molecular descriptors and detailed information
are provided by quantum chemical computations.'®'” These
methods are not restricted by the experimental conditions and
do not require the precision in pure first-principles methods.
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Both QSPR approaches are widely used to investigate vari-
ous properties, including the pK,!'® Selecting appropriate
descriptors is critical for developing a successful equation. The
fittings of various descriptors such as empirical atomic charges,
electrostatic energies, cavity energies, dispersion energies,
repulsion interactions, and bond lengths to pK, have been
reported in the literature.">'”'®" A broad range of substrates
have also been investigated, including alcohols, phenols, and
carboxylic acids with different pK, ranges. Both single
and multiple variable regressions have been reported.'*'*!
The prediction accuracies vary depending on the method or
substrate; the R® values range from less than 0.85 to
higher than 0.99, and the root-mean-square errors vary from
higher than 0.75 pK, units to lower than 0.40 units.'>7'62%
Harding et al. reviewed the descriptors related to pK,.*'*'
The results reported in the literature show that multiple linear
regression (MLR) generally gives better results than simple
linear regression, for both empirical and quantum QSPR
approaches.

The relationship between pK, and the molecular structures
of compounds used as extractants was early studied experi-
mentally using empirical QSPR approaches.”’?? However, the
results are difficult to apply in the prediction of new mole-
cules. In this work, MLR was used to fit numerical equations
for experimental pK, values and quantum descriptors for a set
of acidic phosphorus-containing molecules (training set). The
equation was used to predict the pK, values of another set of
acidic phosphorus-containing molecules (test set). The results
indicate that the equation can be used to estimate the pK,
values of these molecules, and can provide theoretical support
for the design of new extractants.

Methods
Model structures

Ninety-six acidic phosphorus-containing molecules were col-
lected from literature reports, namely 5 dialkylphosphoric
acids, 86 alkyl phosphonates, 5 dialkyl phosphates, and 2 alkyl-
phosphoric acids (only the pK,; values were considered). All
the data were obtained in 75% (volume ratio with water) etha-
nol solution by Yuan's group.??'"?® The pK, of acidic
phosphorus-containing compounds mainly depend on the
electronic effect and steric effect of the phosphorus centers,
the former is dominant. The alkoxy and aryl are stronger
electron-withdrawing than alkyl, which are benefit for proton
dissociating. The structure that containing more electron-
withdrawing group own lower pK, value. However, the proton
dissociation is inhibited by steric effect, the structures that
side chain is closer the phosphorus center own higher pK,
value. A test set and a training set were obtained by random
sampling; the maximum and minimum pK; values were in the
training set, as shown in the left half of Table (see Supporting
Information for details). The geometries were optimized using
a density functional theory method, and several structural
parameters were collected, as shown in Scheme 1.
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Abbreviations of structure parameters:
Ok.x, Omx Onx represent the ESP charge, Mulliken charge,

NBO charge of atom x, x=1, 2, ... , 6.
Ry, represent the distance between atom x and y, x,y=1, 2,

2

H and L represent the HOMO and LUMO of molecules.
X, Y= Carbon, Oxygen.

Scheme 1. The atomic number and the descriptor abbreviations.

Computational details

All geometries were fully optimized, without any constraints,
at the M062X theory level in water, using the conductor-like
polarizable continuum model solvation model with default cal-
culation condition of package (the static dielectric constant of
water is 78.3533);%>3% the CC-PVTZ basis set was used for all
atoms.®" The vibrational frequency was computed for each
structure to determine whether it was a minimum point (no
imaginary frequency). The conformation with the lowest free
energy was selected for molecules that had more than one
possible conformation. The different conformations were only
result from change of side chain direction, which is a little vari-
ation to whole molecule. So the free energies contributions of
vibration were neglected. Natural bond orbital (NBO) analysis
was performed at the same theory level.®%*3! All calculations
were performed using the Gaussian 09, Revision D.01 software
package.4

The structural parameters, listed in Supporting Information
Table S2, and assigned as shown in Scheme 1, were the elec-
trostatic potential (ESP), Mulliken, NBO charges, bond
lengths of key atoms, and the highest occupied molecular
orbitals (HOMOs) and lowest unoccupied molecular orbitals
(LUMOs) (see Supporting Information for details). The test
and training sets were selected by random sampling to avoid
subjective errors. The training set contained 51 structures,
and the test set contained 45 structures. The numerical
equation describing the relationship between the experi-
mental pK, values and the structural parameters was
obtained by MLR, performed using the SPSS 19.0 (Statistical
Package for the Social Sciences) software package; the
results were assessed based on the p value and R% The test
set was also tested using SPSS.

Table 1. The parameters of r* > 0.5.

Parameters  Qua4 Qm2 R34 Ra3 Qn,1 Qn,2 L

R’ 0.8616 0.6474 0.6470 0.6000 0.5994 0.5706 0.5597

Journal of Computational Chemistry 2016, 37, 1668-1671

1669


http://onlinelibrary.wiley.com/

1670

FULL PAPER

WWW.C-CHEM.ORG

Journal of

OMPUTATIONAL

Table 2. The MLR results with constant and without.

Parameters Coefficients Standard error Coefficients Standard error p
Intercept —20.2272 9.6952 0.0425 0 0 \
Qea 5.7303 0.7723 2.14E-09 5.3403 0.7756 1.22E-08
Q.1 —83.6396 11.0230 1.21E-09 —104.6919 45923 4.69E-27
Qna —62.3397 4.3680 1.64E-18 —54.2396 2.0716 1.12E-29
L 9.0450 0.8786 1.60E-13 9.5744 0.8706 1.36E-14

Results and Discussion
Fitting of equation for training set

The r? values for the relationships between the structural
parameters and experimental pK, values were determined; the
parameters with r>> 0.5 are listed in Table 1.

Among the parameters listed in Table 1, the most relevant
structural parameters are Qu4, Qu2 R34 Qn,1, R23 Qno2 and L,
according to the r values; this is in agreement with reports of
similar studies.® However, the highest r* value is only 0.86,
obtained from the pK, and NBO charge on the phosphoryl
oxygen. The values for R;4 and R, 3 are 0.65 and 0.60, respec-
tively; these are not in agreement with those for carboxylic
acids in Alkorta et al’s study,'”’ in which the relationship
between C=0 and C-OH carboxyl bond lengths and pK, had
high R?> values. This is because all the carboxylic acids in
Alkorta et al.'s study have similar structures, whereas for the
acidic phosphorus-containing molecules in this work, the dif-
ferent phosphorus centers, i.e. two P-C, P-C and P-0O, two
P-O, and P-Ph bonds, were taken into account, and these may
have different relationships. These results indicate that a single
descriptor is insufficient for interpreting the trends in pK,
changes. The poor fitting results for the training set were
unsuitable for the test set, therefore MLR was used.

pKa= (—20.2272 *+ 9.6952) + (5.7303 = 0.7723)Qe.4
+ (9.0450 + 0.8786)L+ (—83.6396 + 11.0230) 0]
Qnq+ (—62.3397 = 4.3680)Qy4,R*= 0.9742.
pK,= (5.3403 = 0.7756)Qc, 4+ (9.5744 + 0.8706)L
+ (—104.6919 *+ 4.5923)Qy,+ )

(—54.2396 *+ 2.0716)Qn4, R?= 0.9990.

The best MLR results were usually obtained from parameters
with high R? values; however, the square of the multiple corre-
lation coefficient among seven variables with pK, was 0.946.
This is because these variables are strongly related (see Sup-
porting Information for details). To achieve the best fitting
results, automatic regressions were performed for all parame-
ters; the best results are listed in Table 2. Because the p value,
0.04, is close to the default critical value of 0.05 for the con-
stant term, the zero constant result was also investigated. As
shown in the right half of Table 2, the R? values were 0.9742
and 0.9990 with and without a constant, respectively. As can
be seen from the squares of the correlation coefficients, R? for
multivariate analysis was much higher than that for a single
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variable, whether or not a constant was present. This indicates
that MLR is more effective than single-parameter regression.
The pK, is influenced by various substituent effects, which do
not necessarily reflect the same parameter, therefore it is rea-
sonable that changes in the pK, trends cannot be explained
by a single variable. The p values are much lower than 0.05 for
all the parameters in Table 2, both with and without a con-
stant. This shows that these parameters are effective in the
equations, and the regression results are not significantly
changed by using different training sets.>>>¢

The regression results listed in Table 2 can be transformed
into numerical equations, i.e. egs. (1) and (2), for constant and
zero constant cases, respectively. These more directly reflect
the relationships between the experimental pK, and theoretical
parameters. The physical meaning of the coefficients is the
change in the value of pK, when the variable changes by one
unit.”® The absolute values of the coefficients indicate the
influences on pK, of the variables. The greatest influence on
the pK; is exerted by the hydroxyl hydrogen atom, followed by
the phosphoryl oxygen; this is in agreement with previous
reports that these two groups were frequently used to explore
the pK,.2! It can be seen from the numerical coefficients that
the pKj, is higher when Qu 4 is lower, L is higher, Qg4 is higher,
and Qy; is lower. The NBO and ESP charges on phosphoryl
oxygen play different roles in the equations because they are
obtained using different algorithms. The NBO charge is
obtained from natural orbital population analysis at each
atomic center,*” and the ESP charge is based on an exact one-
electron property calculated from the molecular wavefunction
of space.*¥ Additionally, the r* value for Qy,4 and Qg4 is 0.187,
therefore it is statistically reasonable to use the two charge
parameters in the same equation. Based on egs. (1) and (2), for
a higher pK,, with a more negative Qy 4, Which results from the
electron-donating effect of the group bonded to the phospho-
rus atom, the hydroxyl oxygen is also affected, and the O-H
bond is strengthened; otherwise a more negative Qy 4 leads to
a stronger hydrogen bond between the phosphoryl oxygen
and hydroxyl hydrogen, which inhibits proton dissociation.!'**®!
For a higher pKj,, a higher LUMO energy may lead to a higher-
energy dissociated anion, which is more unstable.*” The ESP
charge of the phosphoryl oxygen is different to its NBO charge.
A more positive Qg4 gives a higher pK,, because the ESP
charge is calculated from the electron density; a more positive
Qg 4 leads to a stronger O-H bond through an inductive effect,
and disfavors proton dissociation.”*” For the hydroxyl hydro-
gen, a more positive Qy; leads to a lower pK,, because the
more positive Qy; indicates higher ionicity of the hydroxyl
bond, with closer dissociation states.
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Testing of test set

The square of the multiple correlation coefficient R* in the
zero constant of eq. (2) is higher than that in eq. (1). However,
the R? value for eq. (2) is 0.971, and that for eq. (1) is 0.974 for
the predicted versus experimental pK, values for the training
set. Equation (1) is therefore slightly better; the results are dis-
played in Supporting Information Table S5. For the training
set, the maximum error is 0.285, at No. 60, and seven struc-
tures have errors greater than 0.200; the standard error is
0.128, and R? is 0.974, i.e. 97.4% of the change in pK, can be
interpreted, based on the four parameters in eq. (1). This is
statistically effective regression and comparable to previously
reported results.

The pK, values in the training set ranged from 1.88 to 6.26,
and are nearly all for acidic phosphorus-containing structures, as
well as being applicable to a wider range of similar molecules.
The test set of 45 structures gained from random sampling was
used to test the method. Equation (1) was more effective than
eq. (2) for prediction using the training set, therefore eq. (1) was
also used to predict the pK, values for the test set, without fit-
ting. The results are shown in the right half of Supporting Infor-
mation Table S5. For the test set, the maximum error was 0.344,
at No. 27, and five structures had errors greater than 0.200. The
standard error was 0.126, and R* was 0.966, which is statistically
sufficient for predictions."*">*" MLR is therefore an efficient
method for predicting the pK, values of acidic phosphorus-
containing structures.

Conclusions

This work represents the first study of the relationship between
the experimental pK, values and structural parameters of acidic
phosphorus-containing molecules using MLR. A numerical equa-
tion was fitted from the training set, and tested on the test set.
Efficient results were obtained for both the training and test sets,
with R? values of 0.97 and 0.96, respectively, and maximum errors
of 0.285 and 0.344, respectively. This accuracy is similar to those in
previous reports. In this work, random sampling was used to
select the training and test sets, to avoid subjective errors. AlImost
the same accuracies were obtained for the two sets, therefore the
equations are suitable for predicting pK; values of these types of
structure. This method will therefore be useful in designing new
acidic phosphorus-containing extractants.
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