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Ninety-six acidic phosphorus-containing molecules with pKa

1.88 to 6.26 were collected and divided into training and test

sets by random sampling. Structural parameters were obtained

by density functional theory calculation of the molecules. The

relationship between the experimental pKa values and struc-

tural parameters was obtained by multiple linear regression fit-

ting for the training set, and tested with the test set; the R2

values were 0.974 and 0.966 for the training and test sets,

respectively. This regression equation, which quantitatively

describes the influence of structural parameters on pKa, and

can be used to predict pKa values of similar structures, is sig-

nificant for the design of new acidic phosphorus-containing

extractants. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24381

Introduction

Acidic phosphorus-containing compounds are an important

class of chemicals, which are widely used as extractants in

hydrometallurgy, especially in rare-earth extraction and separa-

tion. The extractability of an extractant is greatly influenced by

its acid dissociation constant, i.e. pKa. Generally, the lower the

pKa of the extractant, the higher the extraction rate. For exam-

ple, the order of the pKa values of di(2-ethylhexyl)phosphinic

acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester,

and di(2-ethylhexyl) phosphoric acid is the opposite of the

order of their lanthanide extraction rates.[1,2] Additionally, the

pKa is a fundamental property of acidic compounds; it is

mainly used to measure proton dissociation ability, and is

important to acidity-related properties such as biocompatibil-

ity and activity.[3–7]

The pKa is measured experimentally by acid–base titration,

and the results are affected by the temperature, solvent, con-

centration, and other experimental conditions. Even for the

same molecule measured under similar or identical conditions,

different pKa values are frequently reported. Theoretical meth-

ods are therefore employed to explore the relationships

between pKa and molecular structure.[3,7–9] Two techniques

have been developed for this purpose, i.e., first-principle calcu-

lation and the quantitative structure–property relationship

(QSPR) approach. First-principle calculation are based on ther-

modynamic energies; the Gibbs free energies of the deproto-

nation reaction are calculated, and the pKa is then obtained

using a formula.[9–11] This method depends on the deprotona-

tion thermodynamic process, and is based on basic physical

concepts.[9–15] Theoretically, first-principle calculation can be

used to analyze any deprotonation process of any molecule.

However, to achieve sufficient accuracy is a big challenge. For

example, an accuracy of 61 pKa unit is needed to control

errors in the Gibbs free energy changes of deprotonation

within 61.36 kcal/mol, but the errors in ion solvation are

roughly 2 to 5 kcal/mol.[8]

The QSPR approach is based on linear free energy analysis

and relies on molecular descriptors. Generally, three steps are

involved: first, choosing training and test sets, and listing the

pKa values and molecule descriptors, e.g., bond lengths, ener-

gies, and charges; second, fitting equations to the relevant pKa

values and structural parameters in the training set; and third,

examining the equations with the test set.[13–15] An effective

relationship will be established if the equation is verified by

the test set, and it can be used to predict the pKa values of

molecules with similar structures. In early QSPR approaches, a

fitted numerical equation based on experimental molecular

descriptors was used to represent the relationship between

experimental data; some descriptors are difficult to obtain,

therefore this approach is not useful. Additionally, abundant

data are needed for fitting, which are suitable for similar struc-

tures, but not available for different types of molecule. Based

on the respective characteristics of these two techniques,

quantum QSPR methods have been developed in recent years,

in which the molecular descriptors and detailed information

are provided by quantum chemical computations.[16,17] These

methods are not restricted by the experimental conditions and

do not require the precision in pure first-principles methods.
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Both QSPR approaches are widely used to investigate vari-

ous properties, including the pKa.[18] Selecting appropriate

descriptors is critical for developing a successful equation. The

fittings of various descriptors such as empirical atomic charges,

electrostatic energies, cavity energies, dispersion energies,

repulsion interactions, and bond lengths to pKa have been

reported in the literature.[15,17,19] A broad range of substrates

have also been investigated, including alcohols, phenols, and

carboxylic acids with different pKa ranges. Both single

and multiple variable regressions have been reported.[14,15]

The prediction accuracies vary depending on the method or

substrate; the R2 values range from less than 0.85 to

higher than 0.99, and the root-mean-square errors vary from

higher than 0.75 pKa units to lower than 0.40 units.[13–16,20]

Harding et al. reviewed the descriptors related to pKa.[3,14,15]

The results reported in the literature show that multiple linear

regression (MLR) generally gives better results than simple

linear regression, for both empirical and quantum QSPR

approaches.

The relationship between pKa and the molecular structures

of compounds used as extractants was early studied experi-

mentally using empirical QSPR approaches.[21,22] However, the

results are difficult to apply in the prediction of new mole-

cules. In this work, MLR was used to fit numerical equations

for experimental pKa values and quantum descriptors for a set

of acidic phosphorus-containing molecules (training set). The

equation was used to predict the pKa values of another set of

acidic phosphorus-containing molecules (test set). The results

indicate that the equation can be used to estimate the pKa

values of these molecules, and can provide theoretical support

for the design of new extractants.

Methods

Model structures

Ninety-six acidic phosphorus-containing molecules were col-

lected from literature reports, namely 5 dialkylphosphoric

acids, 86 alkyl phosphonates, 5 dialkyl phosphates, and 2 alkyl-

phosphoric acids (only the pKa1 values were considered). All

the data were obtained in 75% (volume ratio with water) etha-

nol solution by Yuan’s group.[2,21–28] The pKa of acidic

phosphorus-containing compounds mainly depend on the

electronic effect and steric effect of the phosphorus centers,

the former is dominant. The alkoxy and aryl are stronger

electron-withdrawing than alkyl, which are benefit for proton

dissociating. The structure that containing more electron-

withdrawing group own lower pKa value. However, the proton

dissociation is inhibited by steric effect, the structures that

side chain is closer the phosphorus center own higher pKa

value. A test set and a training set were obtained by random

sampling; the maximum and minimum pKa values were in the

training set, as shown in the left half of Table (see Supporting

Information for details). The geometries were optimized using

a density functional theory method, and several structural

parameters were collected, as shown in Scheme 1.

Computational details

All geometries were fully optimized, without any constraints,

at the M062X theory level in water, using the conductor-like

polarizable continuum model solvation model with default cal-

culation condition of package (the static dielectric constant of

water is 78.3533);[29,30] the CC-PVTZ basis set was used for all

atoms.[31] The vibrational frequency was computed for each

structure to determine whether it was a minimum point (no

imaginary frequency). The conformation with the lowest free

energy was selected for molecules that had more than one

possible conformation. The different conformations were only

result from change of side chain direction, which is a little vari-

ation to whole molecule. So the free energies contributions of

vibration were neglected. Natural bond orbital (NBO) analysis

was performed at the same theory level.[32,33] All calculations

were performed using the Gaussian 09, Revision D.01 software

package.[34]

The structural parameters, listed in Supporting Information

Table S2, and assigned as shown in Scheme 1, were the elec-

trostatic potential (ESP), Mulliken, NBO charges, bond

lengths of key atoms, and the highest occupied molecular

orbitals (HOMOs) and lowest unoccupied molecular orbitals

(LUMOs) (see Supporting Information for details). The test

and training sets were selected by random sampling to avoid

subjective errors. The training set contained 51 structures,

and the test set contained 45 structures. The numerical

equation describing the relationship between the experi-

mental pKa values and the structural parameters was

obtained by MLR, performed using the SPSS 19.0 (Statistical

Package for the Social Sciences) software package; the

results were assessed based on the p value and R2. The test

set was also tested using SPSS.

Scheme 1. The atomic number and the descriptor abbreviations.

Table 1. The parameters of r2> 0.5.

Parameters QN,4 QM,2 R3,4 R2,3 QN,1 QN,2 L

R2 0.8616 0.6474 0.6470 0.6000 0.5994 0.5706 0.5597
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Results and Discussion

Fitting of equation for training set

The r2 values for the relationships between the structural

parameters and experimental pKa values were determined; the

parameters with r2> 0.5 are listed in Table 1.

Among the parameters listed in Table 1, the most relevant

structural parameters are QN,4, QM,2, R3,4, QN,1, R2,3, QN,2, and L,

according to the r2 values; this is in agreement with reports of

similar studies.[3] However, the highest r2 value is only 0.86,

obtained from the pKa and NBO charge on the phosphoryl

oxygen. The values for R3,4 and R2,3 are 0.65 and 0.60, respec-

tively; these are not in agreement with those for carboxylic

acids in Alkorta et al.’s study,[17] in which the relationship

between C@O and C–OH carboxyl bond lengths and pKa had

high R2 values. This is because all the carboxylic acids in

Alkorta et al.’s study have similar structures, whereas for the

acidic phosphorus-containing molecules in this work, the dif-

ferent phosphorus centers, i.e. two P–C, P–C and P–O, two

P–O, and P–Ph bonds, were taken into account, and these may

have different relationships. These results indicate that a single

descriptor is insufficient for interpreting the trends in pKa

changes. The poor fitting results for the training set were

unsuitable for the test set, therefore MLR was used.

pKa5 220:2272 6 9:6952ð Þ 1 5:7303 6 0:7723ð ÞQE;4

1 9:0450 6 0:8786ð ÞL1 283:6396 6 11:0230ð Þ

QN;11 262:3397 6 4:3680ð ÞQN;4; R25 0:9742:

(1)

pKa5 5:3403 6 0:7756ð ÞQE; 41 9:5744 6 0:8706ð ÞL

1 2104:6919 6 4:5923ð ÞQN;11

254:2396 6 2:0716ð ÞQN;4; R25 0:9990:

(2)

The best MLR results were usually obtained from parameters

with high R2 values; however, the square of the multiple corre-

lation coefficient among seven variables with pKa was 0.946.

This is because these variables are strongly related (see Sup-

porting Information for details). To achieve the best fitting

results, automatic regressions were performed for all parame-

ters; the best results are listed in Table 2. Because the p value,

0.04, is close to the default critical value of 0.05 for the con-

stant term, the zero constant result was also investigated. As

shown in the right half of Table 2, the R2 values were 0.9742

and 0.9990 with and without a constant, respectively. As can

be seen from the squares of the correlation coefficients, R2 for

multivariate analysis was much higher than that for a single

variable, whether or not a constant was present. This indicates

that MLR is more effective than single-parameter regression.

The pKa is influenced by various substituent effects, which do

not necessarily reflect the same parameter, therefore it is rea-

sonable that changes in the pKa trends cannot be explained

by a single variable. The p values are much lower than 0.05 for

all the parameters in Table 2, both with and without a con-

stant. This shows that these parameters are effective in the

equations, and the regression results are not significantly

changed by using different training sets.[35,36]

The regression results listed in Table 2 can be transformed

into numerical equations, i.e. eqs. (1) and (2), for constant and

zero constant cases, respectively. These more directly reflect

the relationships between the experimental pKa and theoretical

parameters. The physical meaning of the coefficients is the

change in the value of pKa when the variable changes by one

unit.[36] The absolute values of the coefficients indicate the

influences on pKa of the variables. The greatest influence on

the pKa is exerted by the hydroxyl hydrogen atom, followed by

the phosphoryl oxygen; this is in agreement with previous

reports that these two groups were frequently used to explore

the pKa.[3] It can be seen from the numerical coefficients that

the pKa is higher when QN,4 is lower, L is higher, QE,4 is higher,

and QN,1 is lower. The NBO and ESP charges on phosphoryl

oxygen play different roles in the equations because they are

obtained using different algorithms. The NBO charge is

obtained from natural orbital population analysis at each

atomic center,[37] and the ESP charge is based on an exact one-

electron property calculated from the molecular wavefunction

of space.[33] Additionally, the r2 value for QN,4 and QE,4 is 0.187,

therefore it is statistically reasonable to use the two charge

parameters in the same equation. Based on eqs. (1) and (2), for

a higher pKa, with a more negative QN,4, which results from the

electron-donating effect of the group bonded to the phospho-

rus atom, the hydroxyl oxygen is also affected, and the O–H

bond is strengthened; otherwise a more negative QN,4 leads to

a stronger hydrogen bond between the phosphoryl oxygen

and hydroxyl hydrogen, which inhibits proton dissociation.[13,38]

For a higher pKa, a higher LUMO energy may lead to a higher-

energy dissociated anion, which is more unstable.[39] The ESP

charge of the phosphoryl oxygen is different to its NBO charge.

A more positive QE,4 gives a higher pKa, because the ESP

charge is calculated from the electron density; a more positive

QE,4 leads to a stronger O–H bond through an inductive effect,

and disfavors proton dissociation.[40] For the hydroxyl hydro-

gen, a more positive QN,1 leads to a lower pKa, because the

more positive QN,1 indicates higher ionicity of the hydroxyl

bond, with closer dissociation states.

Table 2. The MLR results with constant and without.

Parameters Coefficients Standard error p Coefficients Standard error p

Intercept 220.2272 9.6952 0.0425 0 0 \

QE,4 5.7303 0.7723 2.14E-09 5.3403 0.7756 1.22E-08

QN,1 283.6396 11.0230 1.21E-09 2104.6919 4.5923 4.69E-27

QN,4 262.3397 4.3680 1.64E-18 254.2396 2.0716 1.12E-29

L 9.0450 0.8786 1.60E-13 9.5744 0.8706 1.36E-14
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Testing of test set

The square of the multiple correlation coefficient R2 in the

zero constant of eq. (2) is higher than that in eq. (1). However,

the R2 value for eq. (2) is 0.971, and that for eq. (1) is 0.974 for

the predicted versus experimental pKa values for the training

set. Equation (1) is therefore slightly better; the results are dis-

played in Supporting Information Table S5. For the training

set, the maximum error is 0.285, at No. 60, and seven struc-

tures have errors greater than 0.200; the standard error is

0.128, and R2 is 0.974, i.e. 97.4% of the change in pKa can be

interpreted, based on the four parameters in eq. (1). This is

statistically effective regression and comparable to previously

reported results.

The pKa values in the training set ranged from 1.88 to 6.26,

and are nearly all for acidic phosphorus-containing structures, as

well as being applicable to a wider range of similar molecules.

The test set of 45 structures gained from random sampling was

used to test the method. Equation (1) was more effective than

eq. (2) for prediction using the training set, therefore eq. (1) was

also used to predict the pKa values for the test set, without fit-

ting. The results are shown in the right half of Supporting Infor-

mation Table S5. For the test set, the maximum error was 0.344,

at No. 27, and five structures had errors greater than 0.200. The

standard error was 0.126, and R2 was 0.966, which is statistically

sufficient for predictions.[14,15,41] MLR is therefore an efficient

method for predicting the pKa values of acidic phosphorus-

containing structures.

Conclusions

This work represents the first study of the relationship between

the experimental pKa values and structural parameters of acidic

phosphorus-containing molecules using MLR. A numerical equa-

tion was fitted from the training set, and tested on the test set.

Efficient results were obtained for both the training and test sets,

with R2 values of 0.97 and 0.96, respectively, and maximum errors

of 0.285 and 0.344, respectively. This accuracy is similar to those in

previous reports. In this work, random sampling was used to

select the training and test sets, to avoid subjective errors. Almost

the same accuracies were obtained for the two sets, therefore the

equations are suitable for predicting pKa values of these types of

structure. This method will therefore be useful in designing new

acidic phosphorus-containing extractants.
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