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Abstract: As both trifluoromethylthio (CF3S) and trifluoromethoxy (CF3O) moieties have proved to be valuable 

functionalities in pharmaceutical chemistry, trifluoromethylthiolation and trifluoromethoxylation have received a 

great deal of attention. For the trifluoromethylthiolation reaction, a variety of efficient methods have been devel-

oped. Among these methods, C-H trifluoromethylthiolation avoids the need to prefunctionalize substrates, meaning 

that this straightforward protocol is quite attractive and promising. The first section of this review summarizes re-

cent advances in this field, including Csp
3
-H, Csp

2
-H and Csp-H trifluoromethylthiolation and the asymmetric 

Csp
3
-H trifluoromethylthiolation reactions. Trifluoromethoxylation with safe trifluoromethoxylation reagents re-

mains a significant challenge. The second section of this review summarizes the recent progress in trifluoromethoxylation reaction. 
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1. INTRODUCTION 

Although elemental fluorine was isolated by Moissan in 1886, 

organofluorine chemistry was very slow in growing to become a 

significant field of chemistry [1]. Since the invention of Freons in 

1928, followed by the discovery of Teflon in 1938 and the initial 

pioneering work in medicinal fluorine chemistry in 1954, organ-

ofluorine chemistry has played as a distinctive role in the develop-

ment of various significant industrial and academic areas, such as 

fluoropolymers, material science, and pharmaceutical and agricul-

ture chemistry [2]. The statistic data that over 150 fluorinated drugs 

in the market make up about 20% of pharmaceuticals and 30% of 

agrochemicals clearly demonstrate the exceptional importance of 

fluorine [3].  

The widespread application of fluorine in organic chemistry is 

due to the unique structure/reactivity relationships observed for 

fluorine-containing compounds. As the highest electronegative 

element, fluorine possesses a small atomic radius and exhibits ex-

tremely low polarizability. A number of studies have showed that 

the introduction of fluorine atom(s) or fluorine-containing group(s) 

into drug candidates can result in many beneficial effects, such as 

the enhancement of metabolic stability, lipophilicity, membrane 

permeability, and binding affinity [2d, 4]. Among the various fluo-

rine-containing groups, both trifluoromethylthio (CF3S) and 

trifluoromethoxy (CF3O) moieties has strong electron-withdrawing 

power [ m(CF3S) = 0.40, p(CF3S) = 0.50; m(CF3O) = 0.38, 

p(CF3O) = 0.35], and are highly lipophilic substituents [ (CF3S) = 

1.44; (CF3O) = 1.04] [5] meaning that the presence of CF3S- or 

CF3O- in drug candidates may provide profound physicochemical 

modifications [6]. Consequently, determined efforts have been di-

rected towards the development of efficient methods for the 

incorporation of CF3S- or CF3O- groups into organic molecules. 
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The traditional methods for the incorporation of CF3S- group 

include halogen–fluorine exchange reactions [7], trifluorometh-

ylthiolation by CF3SCl [8] or CF3SH [9] and trifluoromethylation of 

sulfur compounds [10]. These methods suffer from the harsh reac-

tion conditions, the use of hazardous or volatile reagent, or the tedi-

ous procedure to prepare sulfur compounds. In the past years, a 

number of general approaches for direct trifluoromethylthiolation 

have been developed and have proved to be highly efficient due to 

the mild reaction conditions and high level of functional group 

tolerance, but many methods require to prefunctionalize substrates 

[11]. Alternatively, C-H trifluoromethylthiolation represents an 

attractive protocol owing to atom and step economy. The first sec-

tion of this review focuses on the recent advances in C-H trifluoro-

methylthiolation reactions and the asymmetric version. Trifluoro-

methylthiolation reactions reported in the literature by the end of 

2013 have been reviewed by other groups [12], but most of the 

studies on C-H trifluoromethylthiolation have been reported since 

2014. The material in this field appearing in the previous reviews is 

covered and introduced as background. 

The incorporation of CF3O- group into organic molecules re-

mains a significant challenge [13] The traditional methods includ-

ing chlorine-fluorine exchange reaction [14] deoxyfluorination of 

aryl fluoroformates [15] oxidative desulfurization-fluorination [16] 

and trifluoromethoxylation by CF3OF [17], suffer from narrow 

substrate scope or harsh reaction conditions. Trifluoromethylation 

of alcohols has been found to be a promising method [18]. Clearly, 

the more straightforward protocol is the direct trifluoromethoxyla-

tion avoiding the use of toxic or thermally unstable reagent. The 

second section of this review summarizes the recent progress in the 

field of direct trifluoromethoxylation reactions by this protocol.  

2. C-H TRIFLUOROMETHYLTHIOLATION 

2.1. Csp
3
-H trifluoromethylthiolation 

Inspired by Togni’s recent studies on electrophilic trifluoro-

methylated hypervalent iodine reagents [10c, 19], the group of Lu 
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and Shen designed and synthesized a new electrophilic trifluoro-

methylthiolation reagent 1 to realize trifluoromethylthiolation of 

cyclic -ketoesters (Scheme 1) [20]. The reactions proceeded very 

well to give the desired products in excellent yields. But the reac-

tions of acyclic -ketoesters turned out to be quite complex. Al-

though reagent 1 was isolated and characterized by 
1
H, 

13
C, and 

19
F 

NMR spectroscopy, as well as elemental analysis, its structure was 

found to be problematic by the group of Buchwald [21]. On the 

basis of a combination of spectroscopic techniques, derivatization 

experiments, and the crystalline sponge method, Buchwald and 

coworkers confirmed that 1’ is the correct structure. Before 

Buchwald’s results were published, this reagent was also applied to 

other reactions (see below). In those reports, they still used the 

drawing 1 as the structure. But in this manuscript, the correct struc-

ture 1’ is used. 
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Scheme 1. Trifluoromethylthiolation of cyclic -ketoesters. 

The group of Shen devoted much efforts to explore new 

trifluoromethylthiolation reagents. Recently, they further developed 

an electrophilic reagent 5, which can be easily synthesized from 

saccharin 4 via chlorination followed by metathesis with AgSCF3 

(Scheme 2) [22]. Reagent 5 can be used for the trifluoromethylthio-

lation of acyclic -keto esters and -ketoamide with the use of NaH 

as base. Interestingly, NaH is not effective for the reactions alde-

hydes or ketones. Instead, when morpholine hydrochloride was 

used as the catalyst, trifluoromethylthiolation of aldehydes or ke-

tones occurred smoothly. 

The group of Qing disclosed a copper-catalyzed trifluorometh-

ylthiolation of benzylic C H bond with readily prepared AgSCF3 

via C H activation (Scheme 3) [23]. This is the first example of 

transition-metal-catalyzed direct construction of Csp
3

SCF3 bond. 

Oxidative protocol was employed to activate the Csp
3

H bond 

without the presence of any directing group, which is one of the 

main challenges of this work. The reaction mechanism is proposed 

as follows. The redox reaction of Cu(I) with oxidant 7 generates 

intermediate In1 and radical In2, which can abstract hydride from 

substrate to produce radical In3. The coordination of In3 to In1 

gives Cu(III) In4. The combination of KCl and AgSCF3 produces a 

new source of [SCF3]
-
, ligand exchange of which with In4 gener-

ates In5. The reductive elimination of In5 affords the final product 

8 and regenerates the catalyst Cu(I). 

Compared with the above studies on the trifluoromethylthiola-

tion of activated Csp
3
-H bond, the trifluoromethylation of unacti-

vated Csp
3
-H bond remains challenging. Prompted by the recent 

work on the construction of Csp
3
-F bond through a radical pathway 

involving the generation of alkyl radicals [24], the group of Chen 

and Liu investigated the formation of Csp
3
-SCF3 bond through 

radical Csp
3
-H bond activation. They found that the reaction can 

proceed smoothly with the use of AgSCF3 as the trifluorometh-

ylthio source and K2S2O8 as the oxidant (Scheme 4) [25]. On the 

basis of the measured kinetic isotope effect (KIE) of 3.3, the radical 

trapping experiments and the observed reactivity of primary < sec-

ondary < tertiary alkanes, they propose that a radical reaction 

mechanism as shown in Scheme 4 is plausible. K2S2O8 is reduced 

by AgSCF3 to generate sulfate radical anion, which abstracts the 

hydrogen atom from the substrate to produce the alkyl radical. The 

oxidation of AgSCF3 by K2S2O8 affords Ag
II
SCF3 species, CF3S 

radical, and CF3SSCF3, all of which might be readily trapped by the 

alkyl radical to give the corresponding trifluoromethylthiolated 

product. 

Almost at the same time, Tang and coworkers also reported the 

trifluoromethylthiolation of unactivated Csp
3
-H bond by the same 

protocol (Scheme 5) [26]. Interestingly, Na2S2O8 was found to be 

the suitable oxidant, but K2S2O8 was not effective at all. Biphasic 
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Scheme 2. Trifluoromethylthiolation of acyclic -ketoesters, aldehydes and ketones. 
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system was used to prevent the oxidation of the starting materials or 

products by Na2S2O8. The reaction shows wide substrate scope and 

can even be applied to the trifluoromethylthiolation of complex 

nature product sclareolide 11a. They propose a similar reaction 

mechanism as that proposed by Chen and coworkers (Scheme 5) 

[25], based on radical trapping experiments and the measured ki-

netic isotope effect of 3.8. 

Very recently, Besset and coworkers describe the Pd-catalyzed 

trifluoromethylthiolation of unactivated Csp
3
-H bond with electro-

philic SCF3 reagent by employing aminoquinoline (8-AQ) as the 

directing group (Scheme 6) [27]. At the outset of this study, they 

anticipated that the reductive elimination pathway for the formation 

of C-SCF3 bond formation would be one of the main synthetic is-

sues. Taking into account that the electrophilic SCF3 reagent might 

act as both an oxidant and SCF3 source, readily allowing the C-

SCF3 bond formation via a high Pd oxidation state, they screened 

various electrophilic SCF3 reagent and found that reagent 14 was 

effective for this conversion. The presence of Brønsted acid PivOH 

as additive was quite favorable. After ruling out the radical path by 

radical trapping experiments, they propose that the reaction should 

occur via C-H activation to produce intermediate In8. The oxida-

tive addition of this intermediate and the subsequent selective re-

ductive elimination and protonation afford the final product. 

2.2. Csp
2
-H trifluoromethylthiolation 

 In 2012, Daugulis and coworkers reported the first example of 

a copper-catalyzed ditrifluoromethylthiolation of aromatic Csp
2
-H 

bond with CF3SSCF3 (Scheme 7) [28]. 8-Aminoquinoline (8-AQ) 

was employed as the directing group in the substrates, and 

CF3SSCF3 was used as the trifluoromethylthiolation reagent. The 

reaction in DMSO proceeded smoothly to furnish the final products 

in good yields. They demonstrated that the 8-aminoquinoline group 

can be efficiently removed in a two-step procedure by amide N-

methylation followed by base hydrolysis to give trifluorometh-

ylthiolated acid (19a) in 85% yield. 

Inspired by Sanford’s previous study on Pd-catalyzed selective 

chlorination of aromatic C H bond with electrophilic chlorinating 

reagent NCS [29], the group of Shen investigated the palladium-
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Scheme 3. Cu-catalyzed benzylic C H trifluoromethylthiolation. 
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Scheme 4. Unactivated Csp
3

H trifluoromethylthiolation. 
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Scheme 5. Unactivated Csp
3

H trifluoromethylthiolation. 
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catalyzed monotrifluoromethylthiolation of aromatic Csp
2
-H bond 

reagent with 20, a structural analog of NCS (Scheme 8) [30]. The 

reactions occurred smoothly by employing pyridinyl as the direct-

ing group. They carried out some preliminary mechanistic investi-

gations to gain some insights into the reaction. It was found that the 

final products can be generated from Pd(IV) species, and that C-H 

bond activation is not the limiting step of this transformation. Based 

on experimental results, they propose that the reaction is initiated 

by cyclopalladation of the substrate with catalyst to generate In10, 

followed by oxidative addition to produce Pd(III) or Pd(IV) species 

In11, and reductive elimination to give the desired product. An-

other pathway that C-SCF3 bond formation proceeds by electro-

philic substitution can’t be ruled out. 

Shortly afterwards, Huang and coworkers developed another 

protocol for the Pd-catalyzed trifluoromethylthiolation of aromatic 

Csp
2
-H bond (Scheme 9) [31]. In this work, pyridinyl was also 

employed as the directing group, but they used the oxidant/“CF3S
-
” 

system instead of “CF3S
+
” 20 to realize this conversion. After ex-

amining various oxidants, they found that Selecfluor was the suit-

able choice. Interestingly, a positive primary KIE (kH/kD=2.7) was 

observed in both intermolecular and intramolecular KIE experi-
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Scheme 6. Pd-catalyzed trifluoromethylthiolation of unactivated Csp
3

H bond. 
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Scheme 7. Cu-catalyzed trifluoromethylthiolation of aromatic Csp
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-H bond. 
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ments, indicating that C-H activation step is the rate-determining 

step. 

The group of Shibata recently developed a new trifluoro-

methanesulfonyl hypervalent iodonium ylide (25) for copper-

catalyzed trifluoromethylthiolation of enamines and indoles 

(Scheme 10) [32]. Interestingly, the CF3S moiety in the products 

comes from the CF3SO2 group in ylide 25. The CF3SO2 group can 

be in situ reduced to a reactive CF3S species (In12) by intramolecu-

lar rearrangement in the presence of Cu(I). The trifluoromethylthio-

lation of enamines with In12 may proceed via a single-electron 

transfer process or an electrophilic path to yield the desired prod-

ucts 27. But for the trifluoromethylthiolation of indoles, the addi-

tion of catalytic amount of PhNMe2 is quite important, which might 

be because PhNMe2 can convert the intermediate In12 to another 

reactive intermediate In13. Electrophilic attack of In13 to indoles 

affords the final products 29. 

Recently, this group examined the use of reagent 25 in the 

trifluoromethylthiolation of pyrroles (Scheme 11) [33]. The reac-

tion conditions are different from that for the trifluoromethylthiola-

tion of indoles. In this work, CuF2 instead of CuCl was used as the 

catalyst, and the amine PhNMe2 was not necessary. A broad scope 
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R
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Scheme 9. Pd-catalyzed trifluoromethylthiolation of aromatic Csp
2
-H bond. 
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Scheme 8. Pd-catalyzed trifluoromethylthiolation of aromatic Csp
2
-H bond. 
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Scheme 10. Hypervalent iodonium ylide for trifluoromethylthiolation of enamines and indoles. 
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of pyrroles can be converted into the desired products in good to 

excellent yields. More experimental evidences were collected to 

prove their hypothesis that 25 can be transformed into In12 in the 

presence of copper catalyst. 
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Scheme 11. Hypervalent iodonium ylide for trifluoromethylthiolation of 

pyrroles. 

The group of Billard described an easy synthesis of trifluoro-

methanesulfanylamides (32) and demonstrated that such com-

pounds can act as CF3S
+ 

cation equivalent promoted by protic acid 

or Lewis acid to realize difunctionalization of alkenes [34]. They 

further tested the trifluoromethylthiolation of various aromatic 

compounds with 32a and found that trifluoromethylthiolation of 

indoles proceeded smoothly in the presence of protic acid (Scheme 

12) [35]. It is proposed that the reacting intermediate is not a real 

CF3S
+
 cation but a protonated form of 32a which could be directly 

attacked by indoles. 
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Scheme 12. Electrophilic trifluoromethylthiolation of indoles. 

The group of Jereb also examined the reactivity of reagent 32a 

and disclosed the electrophilic trifluoromethylthiolation of various 

electron-rich phenols with this reagent promoted by BF3·Et2O or 

triflic acid (Scheme 13) [36]. They also propose that the protonated 

form In14 is the reactive intermediate for this conversion. 

R

OH

32a

TfOH or BF3  Et2O

OH

SCF3

R

HO

35                                                                36

N

H

H

Ph SCF3

TfO-

TfO-

32a + TfOH

In14

PhNH3

 

Scheme 13. Electrophilic trifluoromethylthiolation of electron-rich phenols. 

Recently, Billard and coworkers developed a 2
nd

 generation of 

Billard’s reagent 37. which can also act as CF3S
+
 equivalent [37]. 

Electrophilic trifluoromethylthiolations of various electron-rich 

aromatic compounds with this new reagent can occur smoothly in 

the presence of acid (Scheme 14) [38]. The reaction can also be 

applied to the aromatic compounds bearing electron-deficient sub-

stituents, indicating that this reagent shows higher reactivity com-

pared to its first-generation counterpart 32. 
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Scheme 14. Electrophilic trifluoromethylthiolation of aromatic compounds. 

 As described in Scheme 1, reagent 1’ was developed by Shen 

and coworkers [20]. They explored an improved method for its 

synthesis and then further extended the scope of this reagent to 

trifluoromethylthiolation of indoles (Scheme 15) [39]. It was found 

that catalytic amount of CSA (camphorsulfonic acid) can activate 

reagent 1’ for trifluoromethylthiolation to furnish the desired prod-

uct in high yields. The protonated form In 15 is proposed to be the 

active species for this transformation. 
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Scheme 15. Electrophilic trifluoromethylthiolation of indoles. 

Another reagent 5, which was also developed by Shen and co-

workers, was found to be effective for trifluoromethylthiolation of 

electron-rich arenes and heteroarenes by the same group (Scheme 

16) [22]. The acid TMSCl or TfOH was quite important for this 

reaction. 
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R
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Scheme 16. Electrophilic trifluoromethylthiolation of electron-rich arenas. 
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Shortly afterwards, Li and coworkers also reported the synthe-

sis of reagent 5 and the investigation of this reagent in Lewis acid-

catalyzed electrophilic trifluoromethylthiolation of (hetero)arenes 

(Scheme 17) [40]. For the reaction of electron-rich heteroarenes, the 

use of FeCl3 as the catalyst can afford the desired products in high 

yields. But in the cases of activated benzenes, the addition of cata-

lytic amount of AgSbF6 was necessary to activate the catalyst via in 

situ generation of Fe(SbF6)3. They also noticed that the sole catalyst 

AuCl3 instead of FeCl3/AgSbF6 was also effective for the trifluoro-

methylthiolation of activated benzenes. The observed KIE of 0.9 

suggests that the C-H bond cleavage is probably not involved in the 

rate-determining step, consistent with the Friedel-Crafts reaction 

mechanism. 

Het H

5, conditions

Het SCF3

or

H SCF3
Ar Ar

or

Conditions A: cat. FeCl3

Conditions B: cat. FeCl3 / AgSbF6
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Scheme 17. Lewis acid-catalyzed-electrophilic trifluoromethylthiolation of 

(hetero)arenas. 

2.3. Csp-H trifluoromethylthiolation 

 On the basis of their studies on oxidative trifluoromethylation 

of terminal alkynes [41], Qing and coworkers first reported for the 

metal-free oxidative trifluoromethylthiolation of terminal alkynes 

with TMSCF3 and elemental sulfur (Scheme 18) [42]. The reaction 

can tolerate various functional groups and afford the expected 

products in good yields. They propose that the in situ generated 

CF3

-
 anion from TMSCF3 is trapped by elemental sulfur in DMF to 

produce KSCF3 and compound 46, followed by the oxidative reac-

tion of CF3S
-
 species with terminal alkynes to give the final prod-

ucts. But how the oxidation step occurs remains unknown. 
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Scheme 18. Metal-free oxidative trifluoromethylthiolation of terminal al-

kynes. 

The group of Billard has previously demonstrated that reagent 

32b can act as CF3S
+ 

cation to realize trifluoromethylthiolation of 

electron-rich substrates [34-35]. They recently further applied this 

reagent in the base-catalyzed electrophilic trifluoromethylthiolation 

of terminal alkynes (Scheme 19) [43]. Interestingly, catalytic 

amount of base (LiHMDS or BuLi) is enough and the reaction can 

be completed in 1 min. The reason why the base can catalyze the 

reaction is that the trifluoromethylthiolation of In17 with 32b pro-

duces In18, which is also a strong base to deprotonate substrates 44 

to regenerate In17. 
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(cat.)

32b

44

In17

In18

 

Scheme 19. Base-catalyzed electrophilic trifluoromethylthiolation of termi-

nal alkynes. 

Both the reagents 1’ and 5 developed by Shen and coworkers 

were found to be effective for the trifluoromethylthiolation of ter-

minal alkynes (Scheme 20) [20, 22]. Cu(I) and ligand were neces-

sary in both protocols. The reactions can not only be applicable for 

aromatic alkynes, but also be applicable for aliphatic alkynes, dem-

onstrating good reactivity of these two reagents. 

R SCF3

44                                                     45

R

Methods

Method A: 1', cat. CuBr(SMe)2, bpy, K2CO3

Method B: 5, CuI , pyridine
 

Scheme 20. Cu-mediated trifluoromethylthiolation of terminal alkynes. 

The group of Rueping developed a safe method for the synthe-

sis of a convenient and shelf-stable reagent 14 from N-

chlorophthalimide 47 by employing CuSCF3 as the trifluorometh-

ylthio source (Scheme 21) [44]. This reagent can also be used to 

realize Cu-catalyzed trifluoromethylthiolation of terminal alkynes. 

The transformation can tolerate a wide range of functional groups, 

including amino, ester, keto, nitro, ethers and heterocyclic groups.  

N

O

O

SCF3

R SCF3

44                                                          45

R

cat. CuI, bpy

14, Cs2CO3

47                                                             14

N

O

O

Cl

CuSCF3

 

Scheme 21. Cu-catalyzed trifluoromethylthiolation of terminal alkynes. 

Inspired by Shen’s work on the synthesis of reagent 1’ from 

AgSCF3 and hypervalent iodine reagent [20], Qing and coworkers 

disclosed a Ag-mediated protocol for trifluoromethylthiolation of 

terminal alkynes by using AgSCF3/oxidant system (Scheme 22) 

[45]. They screened various oxidants and found that NCS was quite 

effective. Intermediate 20 was detected by 
19

F NMR spectroscopy 
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in the reaction mixture, indicating that it may be the active species 

in this conversion. However, the reaction of alkynes with reagent 

20 instead of AgSCF3/NCS system did not afford the expected 

product, but 65% yield of the product can be obtained in the pres-

ence of AgNO3, suggesting that the reaction is mediated by silver.  

R SCF3

44                                          45

R

AgSCF3, NCS

K3PO4

N

O

O

SCF3

20

 

Scheme 22. Ag-mediated trifluoromethylthiolation of terminal alkynes. 

2.4. Asymmetric Csp
3
-H trifluoromethylthiolation 

Shen and coworkers reported that reagent 1’ can be employed 

for the asymmetric organocatalytic trifluoromethylthiolation of -

ketoesters (Scheme 23) [46]. Quinine is an efficient catalyst for the 

trifluoromethylthiolation of indanone-derived -ketoesters (five-

membered rings) with reagent 1’ to give the expected products 50. 

In the cases of tetralone- or 1-benzosuberone-derived -ketoesters 

(six- or seven-membered rings), quinine is not effective. Instead, 

quinine-derived phase-transfer catalyst (PTC) proved to be a good 

catalyst. The reaction pathway for the quinine-catalyzed trifluoro-

methylthiolation via In19 was ruled out based on the experimental 

evidence that the stoichiometric reaction of reagent 1’ with quinine 

didn’t produce any new species. They propose that the reaction 

proceeds through the simultaneous activation of the enolate of ke-

toester and reagent 1’ via the formation of hydrogen bonds with 

quinine. 

Almost at the same time, the group of Rueping disclosed the 

cinchona alkaloid-catalyzed trifluoromethylthiolation of -

ketoesters with reagent 14 (Scheme 24) [47]. If quinidine was used 

as the catalyst, (S)-configured products were given with high ee 

value. Interestingly, if quinine was employed as the catalyst, the 

products still could be offered with excellent stereoselectivity, but 

with (R)-configuration. 

O

CO2R1

n

N

O

O

SCF3

48                                                                      50

14

cat. quinidine

14

O

SCF3

CO2R1

up to 99% ee

N

OMe

HO

N
H

Quinidine (53)
 

Scheme 24. Asymmetric trifluoromethylthiolation of -ketoesters. 
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N
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I O
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Scheme 23. Asymmetric trifluoromethylthiolation of -ketoesters. 
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Shortly afterwards, the same group further applied the cinchona 

alkaloid-catalyzed strategy to the trifluoromethylthiolation of oxin-

doles with reagent 14 (Scheme 25) [48]. Although the use of 

quinidine as the catalyst can afford the product in high yield, low 

enantioselectivity was observed. Moderate yield and low ee value 

were offered when quinine was used as the catalyst. (DHQD)2Pyr 

was found to be quite effective for this conversion. 

N
Boc

O

Ar

R

cat. (DHQD)2Pyr (56)
N
Boc

OR

Ar
SCF3

up to 95% ee

14

54                                                                                    55

N

O

MeO

N

H

Et

O

N

OMe

N

H

Et

N N

Ph

Ph

(DHQD)2Pyr (56)
 

Scheme 25. Asymmetric trifluoromethylthiolation of oxindoles. 

 Recently, Shen et al. also disclosed the asymmetric trifluoro-

methylthiolation of oxindoles with the quinine/reagent 1’ system 

(Scheme 26) [49] In contrast to the method developed by Rueping 

[48], this approach seems to show wider substrate scope. Irrespec-

tive of whether the R
1
 group in 3-position of the substrate is an aryl 

group or an alkyl group, the substrates can be converted well into 

the desired products in high yields with high ee value. 

N

R3

R1

O

R2

1', cat. Quinine (52)

N

R3 O

R2

R1

SCF3

54                                                                                    55

up to 99% ee
 

Scheme 26. Asymmetric trifluoromethylthiolation of oxindoles. 

 The group of Liu and Tan investigated the asymmetric 

trifluoromethylthiolation of oxindoles with the use of 

AgSCF3/TCCA system to in situ generate CF3S
+
 species instead of 

electrophilic trifluoromethylthiolation reagent (Scheme 27) [50]. 

The reaction occurred smoothly to give the expected products in 

high ee value. They found that the combination of AgSCF3/TCCA 

can produce CF3S-SCF3, which was confirmed by GC-MS and 
19

F 

NMR, and other insoluble species. Interestingly, both CF3S-SCF3 

and the insoluble species are active for the asymmetric reaction. 

Transition-metal-catalyzed protocol has also recently been util-

ized for the asymmetric trifluoromethylthiolation. The Cu-Boxmi 

complexes, which had been shown to be effective for asymmetric 

trifluoromethylation of -ketoesters by Gade and coworkers [51], 

were found to efficiently catalyze for the enantioselective 

trifluoromethylthiolation of -ketoesters with reagent 1’ by the 

same group (Scheme 28) [52]. EPR and 
19

F NMR spectroscopy 

indicates that no reaction occurred between copper complex and 

reagent 1’, meaning that copper complex might act as a Lewis acid 

to stabilize and orientate ester-enolate forms of the substrates. 

AgSCF3/TCCA

N

N

N

O

ClCl

Cl

OO
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+
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R

N
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Scheme 27. Asymmetric trifluoromethylthiolation of oxindoles. 
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Scheme 28. Cu-catalyzed asymmetric trifluoromethylthiolation of -

ketoesters. 

3. TRIFLUOROMETHOXYLATION 

 In 2008, Kolomeitsev et al. found that anhydrous F
-
 sources 

(60) can cleave the S-O bond of trifluoromethyl triflate (59) to pro-

duce trifluoromethoxide salts 61 (eq. 1, Scheme 29) [53]. Interest-

ingly, some salts are only stable in solvent media, and the others are 

stable in both solid state and solvent media. These trifluoromethox-

ide salts can be used to realize trifluoromethoxylation of alkyl tri-

flates, alkyl halides and o-trimethylsilylphenyl triflate via nucleo-

philic substitution or nucleophilic addition (eq. 2). 

CF3SO2OCF3 Q+ F-

- CF3SO2F

Q+ CF3O-

Q+ F- = [(CH2NMe)]2CF2, (M2N)3C+ Me3SiF2
-,

59                     60                                           61

[(CH2NMe)]2CNMe2
+ Me3SiF2

-, Me4NF,

(Me2N)3S+ Me3SiF2
-, Et3N / HF, CsF, KF, AgF

(1)

X

R1

R2

OTf

SiMe3

or

Q+ CF3O- (61)

OCF3

R1

R2

or

OCF3

(2)

62                                                                  64

63                                                                65

(X= OTf, Br, I)

 

Scheme 29. Nucleophilic trifluoromethoxylation. 
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In 2010, the group of Pazenok and Langlois further studied the 

generation of trifluoromethoxide salts 61 from 59 and their applica-

tion to trifluoromethoxylation [54]. They concluded that CF3O
- 
can 

be stabilized by bulky counter-cation but the bulkiness of the cation 

is not the only parameter for stabilization. Both silver fluoride (AgF) 

and n-tetrabutylammonium triphenyldifluorosilicate [(
n
Bu4N

+
) 

(Ph3SiF2)
-
, TBAT] can react with 59 to in situ produce silver and n-

tetrabutylammonium trifluoromethoxides, both of which are effec-

tive for trifluoromethoxylation of aliphatic bromides and iodides 

(Scheme 30). Silver trifluoromethoxide was found to be more effi-

cient for this conversion. 

Shortly afterwards, the same group described a new protocol for 

trifluoromethoxylation (Scheme 31) [55]. On the basis of the results 

reported by the group of Amii that CAr-OCF3 bond can be cleaved 

by reduction [56], they reasoned that the CF3O moiety in an elec-

tron-poor (trifluoromethoxy)benzene could be a good leaving-group. 

Indeed, they found that the moiety in 2,4-dinitro(trifluoro-

methoxy)benzene 66 can be displaced by fluoride through an SNAr 

mechanism. The CF3O
-
 generated in situ can substitute reactive 

bromides such as benzyl and allylic bromides to furnish the 

trifluoromethoxylation products. Microwave irradiation can 

broaden the substrate scope of this transformation. 

N

NO2

O

O

OCF3

F

TBAT, 66

R-X R OCF3

Microwave

NO2

O2N OCF3

TBATnBu4N+

nBu4N+ -OCF3
nBu4N+ X-

66

62                                        64

In20
 

Scheme 31. Nucleophilic trifluoromethoxylation. 

 In 2011, Ritter et al. disclosed the first transition-metal-

promoted trifluoromethoxylation. Ag-mediated cross-coupling of 

functionalized aryl stannanes and arylboronic acids with trifluoro-

methoxide salt TAS
.
OCF3 [57], which had been synthesized by the 

group of Kolomeitsev [53], afforded the desired product in good 

yields. Trifluoromethoxylation of arylboronic acids requires a two-

step one-pot procedure, but trifluoromethoxylation of the toxic aryl 

stannanes can be realized in one step (Scheme 32). Many byprod-

ucts may be produced in the reaction of aryl stannanes, such as 

fluorodestannylation product, hydroxydestannylation product, pro-

todestannylation product, and biaryl product. Although byproduct 

formation can be minimized in most cases, it remains challenging 

for some substrates.  

R

M

M = SnBu3

       B(OH)2

R

OCF3
Conditions

67                                                                 65

Conditions A, M = SnBu3: TAS OCF3, selecfluor, AgPF6, NaHCO3

Conditions B, M = B(OH)2: (1) NaOH, AgPF6

(2) TAS OCF3, selecfluor, NaHCO3

.

.

 TAS OCF3: (Me2N)3S+ -OCF3
.

 

Scheme 32. Ag-mediated trifluoromethoxylation. 

Recently, Ngai and coworkers described an interesting protocol 

for trifluoromethoxylation. They reported that the N-aryl-N-

(trifluoromethoxy)amines (69), which can be prepared from pro-

tected N-aryl-N-hydroxylamines (68) via trifluoromethylation, can 

undergo OCF3 migration to afford the o-trifluoromethoxylated ani-

line derivatives (70) (eq. 1, Scheme 33). Interestingly, the two-step 

sequence can be integrated into a one-pot transformation without 

isolating the products 69 (eq. 2). On the basis of experimental evi-

dence and related literature [58], they propose that heterolytic 

cleavage of N-O bond in compound 69 generates an ion pair of a 

nitrenium ion and trifluoromethoxide In21. Recombination of this 

ion pair gives intermediate In22, facile aromatization of which via 

tautomerization affords the final product 70.  

4. CONCLUSION 

Due to the unique properties of trifluoromethylthio (CF3S) and 

trifluoromethoxy (CF3O) moieties, trifluoromethylthiolation and 

trifluoromethoxylation reactions have received a great deal of atten-

tion. The direct C-H trifluoromethylthiolation avoids the need to 

prefunctionalize substrates, meaning that this straightforward proto-

col is quite promising. But for the asymmetric version, the C-H 

bond has to be highly activated, suggesting that more efforts should 

be directed towards the development of efficient approaches for the 

trifluoromethylthiolation of unactivated Csp
3
-H bond. Direct 

trifluoromethoxylation with safe reagents remains a significant 

challenge. The methods developed so far involves the presence of 

trifluoromethoxy anion (CF3O
-
), which would be readily decom-

posed to a highly toxic and corrosive gas difluorophosgene (COF2). 

In the field of trifluoromethoxylation, future studies on C-H 

trifluoromethoxylation and its asymmetric version is highly desir-

able. 

R-X

Q+ F- = Bu4N (Ph3SiF2)-, Ag+F-

X = Br, I, NTf2

CF3SO2OCF3 Q+ F-

- CF3SO2F

Q+ CF3O-

59                   60                                               61                                                      64

R OCF3

 

Scheme 30. Nucleophilic trifluoromethoxylation. 
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Scheme 33. Trifluoromethoxylation via OCF3 migration. 
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