

Generation of the CF_3 radical from trifluoromethylsulfonium triflate and its trifluoromethylation of styrenes[†]

Cheng-Pan Zhang,^a Zong-Ling Wang,^{ab} Qing-Yun Chen,^a Chun-Tao Zhang,^b Yu-Cheng Gu^c and Ji-Chang Xiao^{*a}

Received 28th March 2011, Accepted 14th April 2011

DOI: 10.1039/c1cc11765c

The CF_3 radical was generated from the reaction of *S*-(trifluoromethyl)diphenylsulfonium triflate with $\text{Na}_2\text{S}_2\text{O}_4$ or $\text{HOCH}_2\text{SO}_2\text{Na}$ under suitable conditions without further reduction. Based on this, a method for the synthesis of α -trifluoromethylated ketones has been successfully developed.

Trifluoromethylated compounds are increasingly important in organic and medicinal chemistry.¹ A series of trifluoromethylating reagents have been designed and synthesized to transfer the trifluoromethyl group into organic compounds.^{1,2} *S*-(Trifluoromethyl)diphenylsulfonium salts, which were first prepared by Yagupolskii and then developed by Umemoto, Shreeve, Ishihara and Shibata, have been successfully used for the electrophilic trifluoromethylation of nucleophiles.³ To the best of our knowledge, however only few novel applications beyond the electrophilic reactions of these trifluoromethylating reagents have been published so far.^{3–5} In our previous work, we found that *S*-(trifluoromethyl)diphenylsulfonium triflate could be reduced by metals.^{5b} On the basis of this observation, we developed a convenient method for the synthesis of trifluoromethylated heteroaromatics under mild conditions using an *S*-(trifluoromethyl)diphenylsulfonium salt and copper as the reagent mixture.^{5b} The intermediacy of a CuCF_3 species was confirmed in this trifluoromethylation reaction, and the CF_3 radical ($^{\bullet}\text{CF}_3$) was assumed to be the most probable precursor to the CF_3 anion (CF_3^-), although it could not be captured by radical acceptors when metals were present in the reaction mixture.

In order to obtain the CF_3 radical and to avoid its further reduction and thus expand its application, we investigated the reaction of *S*-(trifluoromethyl)diphenylsulfonium triflate with the reducing agents $\text{Na}_2\text{S}_2\text{O}_4$ and $\text{HOCH}_2\text{SO}_2\text{Na}$.⁶ We were pleased to find that the CF_3 radical generated from the trifluoromethylsulfonium salt had a sufficient lifetime to be

captured by styrenes. This is the first example of the generation of the CF_3 radical from a trifluoromethylsulfonium salt initiated by $\text{Na}_2\text{S}_2\text{O}_4$ or $\text{HOCH}_2\text{SO}_2\text{Na}$. Herein, we report the details.

As shown in Table 1, *S*-(trifluoromethyl)diphenylsulfonium triflate reacted with styrene at room temperature or at 0 °C in the presence of two equivalents of $\text{Na}_2\text{S}_2\text{O}_4$ to provide **2a** in 26% yield (entries 1 and 2, Table 1). This product is completely different from that obtained in the reaction between olefins and the CF_3 radical derived from CF_3I and $\text{Na}_2\text{S}_2\text{O}_4$, SmI_2 or Et_3B .^{6g–k} The reaction temperature and the amount of reductant influence the reaction. For example, reducing the reaction temperature to –15 °C, gave the desired product **2a** in a lower 19% yield (entry 3, Table 1), and using one instead of two equivalents of $\text{Na}_2\text{S}_2\text{O}_4$ gave the product **2a** in only 14% yield (entry 4, Table 1). Similar results were found in the reaction of **1a** with *S*-(trifluoromethyl)diphenylsulfonium triflate and $\text{HOCH}_2\text{SO}_2\text{Na}\cdot 2\text{H}_2\text{O}$ (entries 9–11, Table 1). The use of larger excesses of $\text{HOCH}_2\text{SO}_2\text{Na}\cdot 2\text{H}_2\text{O}$ from 6 equiv. to 11 equiv. in this reaction, however, led to no increase in the yield of **2a** (entries 12 and 13, Table 1). The amount of the sulfonium salt also has an influence on the reaction (entries 11–14, Table 1). For example, treatment of *S*-(trifluoromethyl)diphenylsulfonium triflate (2 equiv.) with **1a** (1 equiv.) in the presence of $\text{HOCH}_2\text{SO}_2\text{Na}\cdot 2\text{H}_2\text{O}$ (6 equiv.) at 0 °C afforded **2a** in 36% yield (entry 12, Table 1), while the use of three equivalents of the sulfonium salt under the same conditions provided **2a** in 42% yield (entry 14, Table 1). Moreover, the use of an excess of styrene in this reaction resulted in a 40% yield of the product (entry 15, Table 1).

Besides the generation of **2a**, CF_3H and CF_3CF_3 were formed in these reactions ($\text{CF}_3\text{SO}_2\text{Na}$ could not be completely excluded, however). The presence of these by-products was determined by ¹⁹F NMR spectra according to a literature method.⁷ No residual styrene **1a** was detected by TLC and GC analysis of the reaction mixtures, except for the reaction shown as entry 15 in Table 1. The polymerization of styrene might occur under the reaction conditions, leading to a complete loss of **1a**. The formation of CF_3H and CF_3CF_3 is important evidence that the CF_3 radical is generated from *S*-(trifluoromethyl)diphenylsulfonium triflate and is not further reduced to the CF_3 anion by $\text{Na}_2\text{S}_2\text{O}_4$ or $\text{HOCH}_2\text{SO}_2\text{Na}$.

^a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

E-mail: jchxiao@mail.sioc.ac.cn; Fax: (+) 86-21-64166128

^b Hunan University of Chinese Medicine, Changsha, Hunan Province 410208, China

^c Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c1cc11765c

Table 1 Screening for optimal conditions for the oxidative-trifluoromethylation of styrene^a

Entry	Reductant (R)	$1\mathbf{a} : [\text{Ph}_2\text{SCF}_3]^+ [\text{OTf}]^- : \text{R}^b$	Time (h)	Yield ($2\mathbf{a}$, %) ^c		
					T/°C	($2\mathbf{a}$, %) ^c
1	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	5	r.t.	26	
2	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	6	0	26	
3	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	6	-15	19	
4	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:1	11	r.t.	14	
5 ^d	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	5	r.t.	14	
6 ^e	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	6	0	14	
7 ^f	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	6	0	22	
8 ^g	$\text{Na}_2\text{S}_2\text{O}_4$	1:1:2	5	r.t.	0	
9	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:2	5	r.t.	22	
10	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:2	5	0	28	
11	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	5	0	34	
12	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:2:6	5	0	36	
13	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:2:11	5	0	36	
14	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:3:6	5	0	42	
15	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	4:1:3	6	0	40	

^a The reaction was conducted in air. ^b Molar ratio. ^c Determined by ¹⁹F NMR and TLC analysis. ^d 6 equivalents of H_2O were added. ^e 6 equivalents of H_2O^{18} were added. ^f The solvent was dried. ^g The reaction was conducted under a nitrogen atmosphere.

Although we have made extensive efforts to try to improve the yield of **2a**, the generation of CF_3H and CF_3CF_3 and the polymerization of styrene could not be completely suppressed. In fact, α -trifluoromethylated ketones (e.g. $\text{RCOCH}_2\text{CF}_3$) are difficult to synthesize.⁸ Ando *et al.* reported that treatment of α,β -unsaturated ketones with CF_3I in the presence of Et_2Zn and $\text{RhCl}(\text{PPh}_3)_3$ could give α -trifluoromethylation products in moderate yield.^{8b} Furthermore, trimethyl(1-phenylvinyloxy)silane reacts with CF_3I in the presence of $\text{RhCl}(\text{PPh}_3)_3$ to provide **2a** in 32% yield.^{8c} The requirement for an expensive catalyst limits the use of these methods, making the methodology that we report in this paper highly significant.

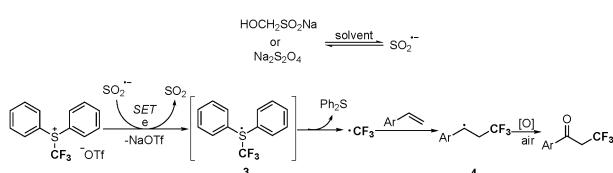
Reductants such as Na_2SO_3 , NaHSO_3 , $\text{P}(\text{NEt}_2)_3$ and $\text{P}(\text{OEt})_3$ were also tested for their suitability in the reaction. However, none of the desired product was formed in most cases, as determined by ¹⁹F NMR spectroscopy and TLC analysis (entries 1–4, Table 2). When $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ was used as the reductant, **2a** was obtained in 11% yield, which is lower than the yields obtained with $\text{Na}_2\text{S}_2\text{O}_4$ or $\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$.

It was also found that the solvent greatly influenced the reaction. When DMF was replaced by DMSO, MeOH, THF or acetone, only a trace of **2a** was formed (entries 6, 8, 10 and 12, Table 2), while none of the required product was formed when CH_3CN , H_2O or DCM were used as the solvent (entries 7, 9 and 11, Table 2). This indicated that DMF is the most suitable solvent for the reaction.

To explore the scope of the reaction, as well as its suitability for the preparation of substituted α -trifluoromethylated ketones, various styrenes were allowed to react with *S*-(trifluoromethyl)diphenylsulfonium triflate in the presence of $\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$. As shown in Table 3, styrenes with electron-withdrawing and electron-donating groups on the phenyl ring were all transformed into the corresponding oxidative-trifluoromethylation products (entries 1–9, Table 3). The position of the substituent had some influence on the reaction. On replacement of the *meta*-substituted styrene (**1b**) with the *para*-substituted analogue (**1c**), the oxidative-trifluoromethylated product (**2c**) was obtained in higher yield (entries 1 and 2, Table 3). When *ortho*-nitro-substituted styrene was used instead of **1b**, almost none of the desired product was obtained (not shown). 1-Vinylnaphthalene was also found to be a suitable substrate for this reaction. (entry 10, Table 3). Aliphatic olefins do not seem to be suitable substrates for this reaction (e.g. entry 11, Table 3).

Based on the results achieved above, we propose the following mechanism for the reaction (Scheme 1). The *S*-(trifluoromethyl)diphenylsulfonium triflate is first reduced by $\text{Na}_2\text{S}_2\text{O}_4$ or $\text{HOCH}_2\text{SO}_2\text{Na}$ *via* single electron transfer (SET) to form the intermediate **3**.^{6k} The CF_3 radical is then formed *via* rapid decomposition of intermediate **3** and can be captured by styrenes to give **4** with hardly any over-reduction to form the CF_3 anion. Finally, the intermediate **4** is oxidized to produce the observed product. As expected, Ph_2S was formed in the reaction and could be isolated by column chromatography after workup. The final step in this sequence, an oxidative process, surprised us because it unexpectedly happened in the presence of $\text{Na}_2\text{S}_2\text{O}_4$ or $\text{HOCH}_2\text{SO}_2\text{Na}$ which are always used as reductants. Moreover, the addition of six equivalents of water to the reaction mixture of **1a** with *S*-(trifluoromethyl)diphenylsulfonium triflate and $\text{Na}_2\text{S}_2\text{O}_4$ led to a lower yield of the product (entry 5, Table 1), while the addition of H_2O^{18} instead of H_2O led to a product which did not contain an O^{18} atom (entry 6, Table 1). When the

Table 2 Reductants and solvents used for the oxidative-trifluoromethylation of styrene^a


Entry	Reductant (R)	$1\mathbf{a} : [\text{Ph}_2\text{SCF}_3]^+ [\text{OTf}]^- : \text{R}^b$	Solvent	Time (h)	T/°C	Yield ($2\mathbf{a}$, %) ^c
1	Na_2SO_3	1:1:2	DMF	5	r.t.	Trace
2	NaHSO_3	1:1:2	DMF	5	r.t.	0
3	$\text{P}(\text{NEt}_2)_3$	1:1:2	DMF	6	r.t.	0
4	$\text{P}(\text{OEt})_3$	1:1:2	DMF	6	r.t.	0
5	$\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	1:1:2	DMF	5	r.t.	11
6	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	DMSO	5	0	Trace
7	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	CH_3CN	5	0	0
8	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	MeOH	5	0	Trace
9	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	H_2O	5	0	0
10	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	THF	5	0	Trace
11	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	DCM	5	0	0
12	$\text{HOCH}_2\text{SO}_2\text{Na} \cdot 2\text{H}_2\text{O}$	1:1:3	Acetone	5	0	Trace

^a The reaction was conducted in air. ^b Molar ratio. ^c Determined by ¹⁹F NMR and TLC analysis.

Table 3 The oxidative-trifluoromethylation of styrenes^a

Entry	Ar	Yield (%) ^b
1	<i>m</i> -NO ₂ C ₆ H ₄ (1b)	21 (2b)
2	<i>p</i> -NO ₂ C ₆ H ₄ (1c)	25 (2c)
3	<i>m</i> -PhC ₆ H ₄ (1d)	23 (2d)
4	<i>p</i> -PhC ₆ H ₄ (1e)	33 (2e)
5	<i>o</i> -ClC ₆ H ₄ (1f)	21 (2f)
6	<i>p</i> -ClC ₆ H ₄ (1g)	31 (2g)
7	<i>p</i> -BrC ₆ H ₄ (1h)	30 (2h)
8	<i>p</i> -MeC ₆ H ₄ (1i)	31 (2i)
9	<i>p</i> -MeOC ₆ H ₄ (1j)	39 (2j)
10	1-Naphthyl (1k)	31 (2k)
11	<i>n</i> -C ₈ H ₁₇ (1l)	Complex

^a The molar ratio of **1b-l**:[Ph₂SCF₃]⁺[OTf]⁻:HOCH₂SO₂Na·2H₂O is 1:2:6. ^b Isolated yield.

Scheme 1 Proposed mechanism for the oxidative-trifluoromethylation of styrenes by *S*-(trifluoromethyl)diphenylsulfonium salt.

reaction was run under a nitrogen atmosphere, however, none of the product was formed (entry 8, Table 1). It seems that the oxygen atom in these products comes from O₂.

In summary, we have discovered that *S*-(trifluoromethyl)diphenylsulfonium triflate can react with Na₂S₂O₄ or HOCH₂SO₂Na under suitable conditions to generate the CF₃ radical without further reduction. Based on this, a convenient method for the synthesis of α-trifluoromethylated ketones has been successfully developed. We propose that the *S*-(trifluoromethyl)diphenylsulfonium triflate is reduced by Na₂S₂O₄ or HOCH₂SO₂Na via a SET mechanism, and that the CF₃ radical is the key intermediate which reacts with styrene to produce, after oxidation, α-trifluoromethylated ketones. Investigations into the details of the oxidation process in this reaction are currently underway.

Notes and references

1 (a) P. Kirsch, *Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications*, Wiley-VCH, Weinheim, 2004; (b) K. Uneyama, *Organofluorine Chemistry*, Blackwell, Oxford, 2006; (c) J.-P. Begue and D. Bonnet-Delpont, *Bioorganic and*

Medicinal Chemistry of Fluorine, John Wiley & Sons, Hoboken, 2008.

2 (a) K. Sato, M. Higashinagata, T. Yuki, A. Tarui, M. Omote, I. Kumadaki and A. Ando, *J. Fluorine Chem.*, 2008, **129**, 51; (b) C.-P. Zhang, H.-P. Cao, Z.-L. Wang, C.-T. Zhang, Q.-Y. Chen and J.-C. Xiao, *Synlett.*, 2010, 1089; (c) L. Chu and F.-L. Qing, *J. Am. Chem. Soc.*, 2010, **132**, 7262.

3 (a) L. M. Yagupolskii, N. V. Kondratenko and G. N. Timofeeva, *J. Org. Chem. USSR*, 1984, **20**, 103; (b) T. Umemoto and S. Ishihara, *J. Am. Chem. Soc.*, 1993, **115**, 2156; (c) J.-J. Yang, R. L. Kirchmeier and J. M. Shreeve, *J. Org. Chem.*, 1998, **63**, 2656; (d) E. Magnier, J.-C. Blazejewski, M. Tordeux and C. Wakselman, *Angew. Chem., Int. Ed.*, 2006, **45**, 1279; (e) Y. Mace, B. Raymond, C. Pradet, J.-C. Blazejewski and E. Magnier, *Eur. J. Org. Chem.*, 2009, 1390; (f) S. Noritake, N. Shibata, S. Nakamura, T. Toru and M. Shiro, *Eur. J. Org. Chem.*, 2008, 3465; (g) A. Matsnev, S. Noritake, Y. Nomura, E. Tokunaga, S. Nakamura and N. Shibata, *Angew. Chem. Int. Ed.*, 2010, **49**, 572.

4 (a) P. Eisenberger, S. Gischig and A. Togni, *Chem.-Eur. J.*, 2006, **12**, 2579; (b) I. Kieltsch, P. Eisenberger and A. Togni, *Angew. Chem., Int. Ed.*, 2007, **46**, 754; (c) P. Eisenberger, I. Kieltsch, N. Armanino and A. Togni, *Chem. Commun.*, 2008, 1575; (d) R. Koller, K. Stanek, D. Stolz, R. Aardoom, K. Niedermann, R. Koller and A. Togni, *Angew. Chem., Int. Ed.*, 2009, **48**, 4332.

5 (a) X. Wang, L. Truesdale and J.-Q. Yu, *J. Am. Chem. Soc.*, 2010, **132**, 3648; (b) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu and J.-C. Xiao, *Angew. Chem., Int. Ed.*, 2011, **50**, 1896; (c) Y. Ye, N. D. Ball, J. W. Kampf and M. S. Sanford, *J. Am. Chem. Soc.*, 2010, **132**, 14682.

6 (a) M. A. McClinton and D. A. McClinton, *Tetrahedron*, 1992, **48**, 6555; (b) N. O. Brace, *J. Fluorine Chem.*, 1999, **93**, 1; (c) W. R. Dolbier Jr, *Chem. Rev.*, 1996, **96**, 1557; (d) G. G. Furin, *Russ. Chem. Rev.*, 2000, **69**, 491; (e) W.-Y. Huang, W. Wang and B.-N. Huang, *Huaxue Xuebao*, 1986, **44**, 488; (f) W.-Y. Huang, J.-T. Liu, Y.-B. Xie and X.-Q. He, *Chin. J. Chem.*, 1994, **12**, 528; (g) Z. Wang and X. Lu, *Tetrahedron*, 1995, **51**, 2639; (h) X. Lu, S. Ma and J. Zhu, *Tetrahedron Lett.*, 1988, **29**, 5129; (i) T. Yajima, H. Nagano and C. Saito, *Tetrahedron Lett.*, 2003, **44**, 7027; (j) Y. Takeyama, Y. Ichinose, K. Oshima and K. Utimoto, *Tetrahedron Lett.*, 1989, **30**, 3159; (k) B.-N. Huang, F.-H. Wu and C.-M. Zhou, *J. Fluorine Chem.*, 1995, **75**, 1.

7 (a) P. Sartori and W. Habel, *J. Fluorine Chem.*, 1980, **16**, 265; (b) P. Sartori and W. Habel, *J. Fluorine Chem.*, 1981, **18**, 131; (c) P. S. Bhadury, S. Singh, M. Sharma and M. Palit, *J. Anal. Appl. Pyrolysis*, 2007, **78**, 288; (d) B. R. Langlois, T. Billard, J.-C. Matalier and C. Yezeguelian, *J. Fluorine Chem.*, 2007, **128**, 851.

8 (a) Y. Kamitori, M. Hojo, R. Masuda, S. Ohara, Y. Kawamura and T. Ebisu, *Synthesis*, 1989, 43; (b) K. Sato, M. Omote, A. Ando and I. Kumadaki, *Org. Lett.*, 2004, **6**, 4359; (c) K. Sato, M. Higashinagata, T. Yuki, A. Tarui, M. Omote, I. Kumadaki and A. Ando, *J. Fluorine Chem.*, 2008, **129**, 51; (d) H. A. Schenck, P. W. Lenkowski, I. Choudhury-Mukherjee, S.-H. Ko, J. P. Stables, M. K. Patel and M. L. Brown, *Bioorg. Med. Chem.*, 2004, **12**, 979; (e) I. Choudhury-Mukherjee, H. A. Schenck, S. Cechova, T. N. Pajewski, J. Kapur, J. Ellena, D. S. Cafiso and M. L. Brown, *J. Med. Chem.*, 2003, **46**, 2494; (f) T. Shono, N. Kise and H. Oka, *Tetrahedron Lett.*, 1991, **32**, 6567; (g) A. D. Allen, G. Angelini, C. Paradisi, A. Stevenson and T. T. Tidwell, *Tetrahedron Lett.*, 1989, **30**, 1315; (h) A. J. Laurent and S. Lesniak, *Tetrahedron Lett.*, 1992, **33**, 3311; (i) N. Roques, *WO 0158833 (A1)*, 2001; (j) N. Kamigata, K. Uddo and T. Shimizu, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1997, **129**, 155.