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Abstract

Prediction of transmembrane helices (TMH) in a helical membrane proteins provides valuable information about the protein
topology when the high resolution structures are not available. Many predictors have been developed based on either amino
acid hydrophobicity scale or pure statistical approaches. While these predictors perform reasonably well in identifying the
number of TMHs in a protein, they are generally inaccurate in predicting the ends of TMHs, or TMHs of unusual length. To
improve the accuracy of TMH detection, we developed a machine-learning based predictor, MemBrain, which integrates a
number of modern bioinformatics approaches including sequence representation by multiple sequence alignment matrix, the
optimized evidence-theoretic K-nearest neighbor prediction algorithm, fusion of multiple prediction window sizes, and
classification by dynamic threshold. MemBrain demonstrates an overall improvement of about 20% in prediction accuracy,
particularly, in predicting the ends of TMHs and TMHs that are shorter than 15 residues. It also has the capability to detect N-
terminal signal peptides. The MemBrain predictor is a useful sequence-based analysis tool for functional and structural
characterization of helical membrane proteins; it is freely available at http://chou.med.harvard.edu/bioinf/MemBrain/.
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Introduction

Motivation for a more accurate TMH predictor
Membrane-embedded a helical, polytopic proteins constitute

the majority of ion channels, transporters, and receptors in living

organisms. This class of proteins, which account for ,40% of all

membrane proteins, are difficult targets for high resolution

structural studies. Although experimentally determined structures

of integral membrane proteins have been increasing at a fast rate

in recent years, they only sum to less than 1% of the structures in

the Protein Data Bank (PDB). Probably the first analysis that

researchers perform when studying a helical membrane protein,

whether it is for functional or structural characterization, is

prediction of TMHs from the protein amino acid sequence.

Knowledge of TMHs is very useful in initial elucidation of the

overall topology of the protein, as well as in the rational design of

protein constructs for structural studies.

Computational tools for TMH prediction are widely available.

In this paper and in previous papers on TMH prediction, TMH is

defined as a segment of helix that is embedded in the membrane.

Hence, TMH sequence ends when the transmembrane region

ends, although the helix can continue beyond the membrane. In

general, residues of TMHs are mostly hydrophobic. Hence, earlier

TMH prediction programs, such as TOP-PRED [1], compute

sequence hydrophobicity from amino acid hydrophobicity scales

assigned by biophysical and chemical measurements [2–4], and

predict TMH propensity based on the average hydrophobicity

score of a sliding prediction window of N successive residues along

the sequence. Later predictors use more statistics-based, machine

learning techniques. For example, PHDhtm [5] is based on neural

networks, and TMHMM [6] and Phobius [7] are based on the

hidden Markov model. The available TMH predictors are used

routinely in membrane protein characterization and, in most

cases, are sufficiently reliable in providing descriptive information

about TMHs [8].

However, as more high resolution structures of helical

membrane proteins become available, we learn that TMH has a

wide length distribution. About 5% of the TMHs in the known

structures are very short (,15 residues) and only span the

membrane partially. These helices are known as the ‘half TMHs’

(see an example in the structure of the glycerol-conducting channel

[9]). Very long TMHs (.40 residues) have also been found in the

membrane proteins, e.g., the metalloenzyme particulate methane

monooxygenase protein [10]. None of the existing TMH

predictors perform satisfactorily in detecting TMHs of irregular

lengths. For example, TOP-PRED [1] predicts all the TMHs to be

21 residues long, TMHMM [6] cannot predict TMHs shorter

than 16 residues or longer than 35 residues, and SOSUI [11]

cannot predict TMHs longer than 25 residues.

We developed a TMH prediction method, named MemBrain,

which aims to improve the accuracy of TMH prediction.

MemBrain was trained using the standard training dataset that

was used by many other predictors, yet performed ,20% better

than others when tested with a benchmark testing dataset. The

improvement came mainly from the capability of MemBrain to

predict accurately the ends of TMHs and therefore to detect

TMHs of irregular lengths. Such capability was realized by

applying the powerful optimized evidence-theoretic K-nearest

neighbor (OET-KNN) prediction algorithm [12–14] to protein

sequence representations that include sequence evolution infor-
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mation, and by merging results from prediction sequence windows

of different sizes. Our results show that, with the fast expanding

database of experimental membrane protein structures, there is

still much room for improving the accuracy of TMH prediction

using a pure statistics-based protocol.

Results

The algorithm
A flowchart of the MemBrain predictor is shown in Figure 1.

We represented a protein sequence of N residues by the position-

specific scoring matrix (PSSM) (N rows and 20 columns),

generated using the PSI-BLAST program [15] (see Methods

section). The PSSM contains sequence evolution information from

multiple sequence alignment against the SWISS-PROT protein

database, and therefore provides a more complete description of

the characteristics of a protein sequence. The propensity of a

residue at positions i for being a part of a TMH was predicted

based on a sequence segment of length L centered on i, where L is

an odd number that represents the prediction window size. The

prediction window size has a profound effect on the prediction

outcome. Large window size, e.g., L = 17 (used in the PHDhtm

predictor [5]), is more effective for predicting residues in the

middle of a long TMH due to higher content of neighborhood

information. However, it performs poorly for residues near the

ends of TMHs, and is incapable of predicting half TMHs shorter

than 15 residues. On the other hand, if L is too small, the

prediction accuracy generally suffers as a result of losing the

neighborhood sequence information. In the MemBrain predictor,

we combined two window sizes to minimize the bias caused by the

use of only one window size. We found that the fusion of two

window sizes, 13 and 15, gave the best prediction results.

For TMH prediction, we used the standard training dataset

which was used by most other TMH predictors, including

TMHMM [6], Phobius [7], THUMBU [16] and SVMtm [17].

This dataset includes 50 helical membrane proteins of known

TMH regions (see Supplementary Table S1). For each of the 50

proteins, the PSSM was generated using the PSI-BLAST program.

From the PSSM, the matrix elements (L620) for various sequence

segments of L = 13 or 15 were extracted and stored in the training

vectors t13
i or t15

j , respectively (see Methods section for details of

constructing these vectors). These training vectors were labeled as

‘TMH’ if the residue j at the middle of the sequence segment is a

part of a TMH, and were otherwise labeled as ‘NOT TMH’.

From the 50 PSSMs, we built a training set of 14,531 vectors of

L = 13 and 14,431 vectors of L = 15. These vectors were used as

statistical rulers for making predictions on the target protein.

Given a query protein, the PSSM was constructed and the

query vector for sequence segment centered on residue i (qL
i ) was

defined. To predict the TMH propensity of residue i, denoted here

as Ei, we applied the OET-KNN algorithm for which the inputs

are the query vector qL
i and all tL

j s in the training set with the same

dimension. The OET-KNN algorithm is a classification tool which

has proven to be powerful in pattern recognition [12,14] as well as

in the prediction of sub-cellular locations of proteins [13,18]. In

the OET-KNN calculation (described in details in the Methods

section), the Euclidean distances between qL
i and all tL

j s were

calculated, and the 50 closest matches were used to calculate Ei,

which ranges from 0 to 1, where 0 and 1 are zero and unity

probability of TMH, respectively. The TMH propensity obtained

for L = 13, E13
i , was merged with that obtained for L = 15, E15

i , by

simple averaging. Thus the combined TMH propensity for residue

i is Ei~ E13
i zE15

i

� ��
2, ranging from 0 to 1. The procedure was

repeated to cover all residues, (L-1)/2#i#N – (L-1)/2, in the query

protein.

For a query protein, the Ei vs. i plot gives an overview of the

residue-specific TMH propensity. We used the median filter

technique [19] to smooth the TMH propensity profile, and at the

same time, to reduce noise. The final step is to determine the

TMHs based on the smoothened propensity profile. In most other

predictors, a fixed threshold is used to segment the scores, i.e.,

residues having scores larger than the threshold are assigned as

TMH [11,17,20]. However, the optimal threshold for defining two

TMHs separated by long loops is very different from the threshold

required for identifying TMHs separated by short loops or tight

turns. High-resolution structures show that two consecutive TMHs

are often connected by very short loops or turns. In these cases,

since the loop residues only represent a small region of the

prediction window, the TMH propensity calculated for the short

loops are higher than those of long loops. To solve this problem,

we used a dynamic threshold method in which a base threshold

propensity of 0.4 was first used to define TMH fragments. Then

we raised the threshold according to the shape of the local

propensity profile for identifying short loops or helical breaks in

these fragments (see Methods section for details).

Finally, in some membrane proteins, the first N-terminal TMH

is a N-terminal signal peptide. We included an extra module in the

MemBrain program to detect potential N-terminal signal peptide

in a membrane protein using methods described in ref. [21].

Performance
To test the MemBrain predictor and compare its performance

with the existing TMH predictors, we constructed a testing dataset

consisting of 70 helical membrane proteins of known high

resolution structures which do not overlap with the training

dataset (see Supplementary Table S2). There are a total of 378
Figure 1. A flowchart diagram of the MemBrain protocol.
doi:10.1371/journal.pone.0002399.g001
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TMHs in the testing dataset. The performances of the TMH

predictors were evaluated with four different scores.

1. The TMH prediction success rate (VTMH). VTMH is simply the

fraction of TMHs in the testing set that are correctly predicted

[22]; it is defined as

VTMH~
number of correctly predicted TMHs

total number of TMHs
, ð1Þ

where a TMH is considered predicted correctly if it has an

overlap of at least 9 residues with the prediction. However, we

note that such definition is not robust, and in some other

studies, different lengths of residue overlap were used [22,23].

2. The protein prediction success rate (VP). VP is the fraction of helical

proteins in the testing set that are correctly predicted [22]; it is

defined as

VP~
number of correctly predicted proteins

total number of proteins
, ð2Þ

where a protein is considered predicted correctly if all the

TMHs in this protein are correctly predicted (as defined in

VTMH above) and the number of predicted TMHs is equal to

the observed number of TMHs in the protein.

3. The N and C scores. These two scores evaluate the accuracy of

predicting the ends of TMHs [22]. N and C scores are the

number of N- and C-terminal residues that do not match when

aligning the predicted and observed TMHs. In the best case, if

the predicted and observed TMHs are completely matched,

the N and C scores equal to 0.

4. The normalized RMSD. Finally, we calculated the normalized

distance between the predicted and known TMH representation

vectors, denoted by p = [p1, p2,…, pN], in which pi is assigned to 1

if residue i is a part of a TMH and is otherwise assigned to 0. The

normalized distance, or RMSDN, is defined as

RMSDN~
p{p0
�� ��

p0k k ~

PN
i~1

pi{p0
i

� �2
� �1=2

PN
i~1

p0
i

� �2
� �1=2

, ð3Þ

where p and p0 are the predicted and known TMH

representation vectors of a protein, respectively. The normalized

RMSD is less subjective than the definition of VTMH and VP

above.

Table 1 compares the performances of MemBrain and other

TMH predictors as judged by the four different scorings described

above. MemBrain performs significantly better than other

predictors in all four scoring categories. The VTMH and VP scores

have been widely used in evaluation of TMH predictors.

MemBrain VTMH and VP scores are 97.9% and 87.1%,

respectively, which are about 6–16% better than Phobius (the

best performer in this scoring category among the published

predictors). MemBrain also has an improved capability to predict

correctly the ends of TMHs as shown by the mean N and C scores

of 3.2 and 3.1, which are about 20% better than the best published

predictor for this scoring category. Finally the MemBrain mean

normalized rmsd is 0.35, also about 20% better than the second-

best performing predictor Phobius. The observed and predicted

TMHs for the 70 membrane proteins in the testing dataset are

given in Supplementary Data S1.

Discussion

The above prediction scores obtained from a fairly complete

testing dataset show that MemBrain is the best TMH predictor to

date. Probably the most attractive feature of MemBrain is the

improved ability in correctly identifying the ends of TMHs. This

capability is important because there is a wide distribution of

TMH length amongst the 70 helical polytopic membrane proteins

in the testing dataset (Fig. 2a), e.g., TMH can be as short as 10

residues. Most TMH predictors cannot detect TMHs shorter than

15 residues (e.g., Figures 2b&c show that the shortest TMH

predicted by TMHMM and Phobius, the predictors which gave

the second best N and C scores in Table 1, is 17 residues).

However the length distribution of TMHs predicted by MemBrain

matches most closely to that of the observed dataset (Fig. 2d). We

also noticed that MemBrain shows similar improvements in

prediction when considering only TMHs that are longer than 15

residues (see Supplementary Table S3).

The improvement came from a combination of the steps used in

our protocol shown in Figure 1. First, the PSSM representation

contains sequence evolution information, which provides more

complete sampling for statistical prediction methods. The advantage

of a pure statistical approach over hydrophobicity-based prediction

methods is that the prediction outcome does not depend on our

interpretation of amino acid sequence in TMH formation, which

could introduce bias. Second, the OET-KNN algorithm is a powerful

classification method that can combine many different evidences and

deal with the uncertainty to reach the optimal decision. Third, the

fusion of two prediction window sizes provides more flexibility in

accounting for length variation of TMHs, and thus reduces the bias

towards a fixed TMH length introduced by using only one window

size (as treated in all the previous predictors). Finally, assignment of

TMHs using the dynamic threshold method further refines the

prediction by detecting short loops and turns that separate TMHs.

A somewhat unsatisfying aspect of the TMH-only prediction is

the complete absence of amphipathic, extramembrane helices that

are common in helical membrane protein structures. In both the

training and testing datasets, the TMH sequences are defined to

end when the transmembrane regions end. However, according to

many high resolution structures, a considerable portion of

transmembrane helices extend well beyond the lipid bilayer and

Table 1. Performance comparison of various TMH
predictorsa.

Predictor VTMH VP N-score C-score RMSDN

THUMBU[16] b 85.5% 47.1% 6.964.9 6.764.9 0.5860.19

SOSUI[11] c 89.1% 57.1% 5.064.1 5.064.2 0.4460.21

DAS-TMfilter[20] d 90.7% 64.3% 6.565.0 5.565.3 0.5860.16

TOP-PRED[1] e 92.6% 60.0% 4.563.8 4.663.9 0.4560.15

TMHMM[6] f 91.0% 65.7% 4.563.8 4.563.9 0.4460.15

Phobius[7] g 91.8% 71.4% 4.664.0 4.464.1 0.4460.19

MemBrain h 97.9% 87.1% 3.263.0 3.162.8 0.3560.14

aThe testing dataset consists of 378 TMH segments from 70 proteins (see
Supplementary Table S2).

bhttp://sparks.informatics.iupui.edu/Softwares-Services_files/thumbup.htm [16].
chttp://bp.nuap.nagoya-u.ac.jp/sosui/ [11].
dhttp://mendel.imp.ac.at/sat/DAS/DAS.html [20].
ehttp://bioweb.pasteur.fr/seqanal/interfaces/toppred.html [1].
fhttp://www.cbs.dtu.dk/services/TMHMM/ [6].
ghttp://phobius.cgb.ki.se/ [7].
hhttp://chou.med.harvard.edu/bioinf/MemBrain/.
doi:10.1371/journal.pone.0002399.t001
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become hydrophilic. Therefore, TMH predictors cannot predict

the extramembrane portions of helices. Our future direction is to

develop methods to predict both transmembrane and extramem-

brane helical segments in helical polytopic membrane proteins.

Methods

Construction of query and training vectors
The PSSM matrix of a protein P of N residues, which contains

sequence evolution information, is defined as

PPSSM~

a1,1 a1,2 � � � a1,20

a2,1 a2,2 � � � a2,20

..

. ..
. ..

. ..
.

aN,1 aN,2 � � � aN,20

2
66664

3
77775, ð4Þ

where ai,j denotes the probability of residue i of the protein being

changed to amino acid type j as determined from multiple sequence

alignments [15]. The matrix elements in Eq. 4 were generated using

the PSI-BLAST [15], which searches the SWISS-PROT database

(version 52.0 released on 6-March-2007) against the sequence of the

protein. For prediction studies, a residue at position i of the protein

can be represented by a query vector, qL
i , composed of the PSSM

matrix elements of the query protein corresponding to a sequence

segment of length L centered on i, e.g.,

qL
i ~ ai{ L{1ð Þ=2,1, . . . ,ai{ L{1ð Þ=2,20

� ��
ai{ L{1ð Þ=2z1,1, . . . ; ai{ L{1ð Þ=2z1,20

� �
� � � ,

aiz L{1ð Þ=2,1, . . . ,aiz L{1ð Þ=2,20

� ��
,

ð5Þ

where L is an odd number. Eq. 5 is also used to construct training

vectors, tL
j , from their corresponding PSSM matrices of proteins in

the training dataset.

Calculation of TMH propensity
Consider the problem of predicting the propensity of residue i of

the query protein belonging to a structural pattern, denoted by w,

where

w~
1 TMH

0 NOT TMH

	
: ð6Þ

We represent the residue by a query vector qL
i (see Eq. 5 above),

constructed for prediction window size L. The knowledge basis

used for the prediction is given by the training dataset, TL, e.g.,

TL~ tL
1 ,w1

� �
, tL

2 ,w2

� �
, . . . , tL

M ,wM

� �
 �
, ð7Þ

where vectors tL
j s were also constructed as in Eq. 5 for window size

L, and their corresponding patterns wj’s are known.

Let SK be a set of vectors consisting of K tL
j s in TL that have the

shortest Euclidean distances to qL
i , referred to here as the K

nearest neighbors of qL
i . For any tL

j [SK, the knowledge that tL
j has

a pattern w is a piece of evidence which increases our belief that qL
i

also has the pattern w. This evidence is quantified, as in refs.

[24,25], by an evidence function

E qL
i tL

j ,w
���
 �

~exp {CL
w D2 tL

j ,qL
i


 �h i
d wj ,w
� �

, ð8Þ

where D tL
j ,qL

i


 �
is the Euclidean distance between tL

j and qL
i , and

Figure 2. TMH length distribution in (a) 70 known membrane protein structures in the testing dataset, (b) TMHs predicted by
TMHMM [6], (c) TMHs predicted by Phobius [7], and (d) TMHs predicted by MemBrain.
doi:10.1371/journal.pone.0002399.g002
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the parameter CL
w is associated with a particular pattern w; the

delta function in Eq. 8 is

d wj ,w
� �

~
1, if wj~w

0, if wj=w

(
: ð9Þ

In OET-KNN, CL
w is optimized by maximizing the prediction

accuracy of every sample in TL. Using the detailed optimization

protocol described in ref. [14], we found the following values of

CL
w : C13

1 ~0:105, C13
0 ~0:094, C15

1 ~0:096, and C15
0 ~0:085.

Combining the knowledge of the K nearest neighbors in SK, the

evidence of qL
i belonging to the pattern w is

E qL
i ,w

� �
~1{ P

K

j~1
1{E qL

i tL
j ,w
���
 �
 �

: ð10Þ

The final evidences E qL
i ,w

� �
are then normalized as in

E qL
i ,w

� �
~

E qL
i ,w

� �
E qL

i ,w~1
� �

zE qL
i ,w~0

� � ð11Þ

to satisfy the normalization condition E qL
i ,w~1

� �
z

E qL
i ,w~0

� �
~1.

Finally, after merging the prediction results obtained using two

different window sizes, L = 13 and 15, the propensity of residue i

belonging to TMH is

E qi,w~1ð Þ~ E q13
i ,w~1

� �
zE q15

i ,w~1
� �� ��

2: ð12Þ

Dynamic threshold segmentation
To assign TMH fragments based on the propensity profile, we

used a dynamic threshold segmentation approach. First, residues

with propensity greater than or equal to 0.4 were considered as

TMH. The base threshold, l= 0.4, was selected by optimizing the

self-consistency test performance as was done in refs. [11,17,20]. A

TMH is initially assigned when l intersects the propensity profile

at two consecutive points. For example, given l= 0.4, the N-

terminal residue of a TMH is residue n0 if En021,l and En0.l.

Moving along the sequence, the next encounter of Ec0.l and

Ec0+1,l defines the C-terminal residue of the TMH to be residue

c0. Hence, the initial assignment of TMH is from residues n0 to

c0. The value of l was then increased by increment of 0.05 until l
intersects the profile within the initial TMH at four points. In this

case, the original TMH was split into two TMH segments. The

first TMH is from residues n0 to c1, where Ec1.l and Ec1+1,l,

and the second TMH is from residues n1 to c0, where En121,l
and En1.l. A TMH shorter than 5 residues was not segmented

out and remained as a part of the original TMH. Figure 3 shows

an example of dynamic threshold assignment of TMHs in the

protein lactose permease of Escherichia coli (PDB code: 1PV7) [26].

Note that the short loops between the 3rd and 4th TMHs, and

between the 9th and 10th TMHs were successfully detected using

this method.

All algorithms used in MemBrain were implemented in the C

programming language and executed in the Linux operating

system.
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