

Electron —— A Catalyst in Organic Chemistry

Jian Rong(荣健) Jan 5th, 2015

The Hu Group

Outline

✓ Introduction

- Electrons in organic chemistry
- Catalysts in organic chemistry

✓ Electron as A Catalyst in Organic Chemistry

- Acid/Base catalysis
- Redox catalysis (electron/hole catalysis)
- Examples of electron-catalyzed reactions

✓ Summary

Introduction

Most reactions in organic chemistry are acid-base (Lewis acid and Lewis base) reactions.

There are also exceptions: pericyclic reaction, etc.

Electrons in organic chemistry

All reactions in organic chemistry involve electrons.

There is no exception.

How the electron can be a catalyst in organic chemistry?

Catalysts in organic chemistry

Catalysts:

Enzymes

Transition metals (and complexes)

Zhou, C.; Sczepanski, J. T.; Greenberg, M. M. J. Am. Chem. Soc. 2012, 134, 16734.

86%

Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.

Organocatalysts (Lewis acids and bases etc.)

5

Catalysts in organic chemistry

The smallest catalysts are not the organocatalysts (such as *L*-proline), and they are two principal charged atomic particles: the proton (H⁺) and the electron (e⁻), although each particle is accompanied in solution by a counterion.

```
proton is small (1.0 g mol<sup>-1</sup>)

electron is tiny (0.55 mg mol<sup>-1</sup>)
```

For **proton** as a catalyst

Add a proton—acid catalysis

Remove a proton—base catalysis

Acid catalysis

For **proton as a catalyst**

Add a proton—acid catalysis

Acid-catalyzed cross aldol reaction

Catalytic cycle

$$R^2$$
 H

start here H^+
 R^2
 H
 R^2
 H
 R^2
 H
 R^2
 H
 R^2
 R^2

Base catalysis

For **proton as a catalyst**

Remove a proton—base catalysis

Base-catalyzed cross aldol reaction

Electron catalysis

For **electron** as a catalyst

Add a electron—electron catalysis

Electron-catalyzed Diels-Alder reaction

Catalytic cycle

Hole catalysis

For **electron** as a catalyst

Remove a electron—hole catalysis

Hole-catalyzed Diels-Alder reaction

$$\begin{array}{c} \xrightarrow{\text{Ar}_3\text{N}} \\ \text{cat} \end{array}$$

Redox catalysis

For electron as a catalyst

```
Add a electron—electron catalysis

Remove a electron—hole catalysis

DAISET: double activation induced by single electron transfer
```

Redox catalysis

Invovle reaction intermediates either one oxidation-state level above or one level below that of the substrates and products.

During a redox-catalyzed reaction, an electron is temporarily added or removed. The process of electron addition/removal is variously called:

ET: electron transfer,

SET: single-electron transfer,

CT: charge transfer,

PET: photoinduced electron transfer

Redox catalysis

For electron as a catalyst

Add a electron—electron catalysis

For electron as a catalyst

Remove a electron—hole catalysis

Hole-catalyzed reactions

Acid-catalysed reactions

rxn(s)

Electrophilic intermediates

Redox catalysis

Intermediates In Organic Synthesis

- √ Carbanions
- ✓ Carbocations
- ✓ Carbenes
- ✓ Neutral radicals

Chemical oxidation or reduction

Electrochemical processes

Photoinduced electron transfer (PET)

Monomolecular radical nucleophilic substitution reaction (S_{RN1}-chemistry)

Classic view of the $S_{RN1}\mbox{-}mechanism$

S_{RN1}-process considering the electron as a catalyst

Base-promoted homolytic aromatic substitution (BHAS)

Classic view of the BHAS-mechanism

Ar-X ΕT

BHAS considering the electron as a catalyst

Liu, W.; Cao, H.; Zhang, H.; Chung, K, K.; He, C.; Wang, H.; Kwang, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737.

Transition-metal-free Heck-type arylation

Heck-type arylation considering the electron as a catalyst

Precatalyst

Shirakawa, E., Zhang, X. & Hayashi, T. *Angew. Chem. Int. Ed.* **2011,** *50,* 4671

Cross-dehydrogenative coupling reaction

Cross-dehydrogenative coupling reactions considering the electron as a catalyst

other catalysts:

FeCl₂ FeSO₄

Fe(OAc)₂ Cul

Bu₄NI DMEDA

TMEDA

Wertz, S., Leifert, D. & Studer, A. Org. Lett. 2013, 15, 928.

Arene trifluoromethylation

Zhang, B., Mück-Lichtenfeld, C., Daniliuc, C. G. & Studer, A. Angew. Chem. Int. Ed. 2013, 52, 10792.

Alkoxycarbonylation of aryl halides

Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem. Int. Ed. 2012. 51, 12542.

pK_a to acid/base reactions

Acid-catalyzed cross aldol reaction

Understand the existing reactions and design new reactions by pK_a .

CH₃CH₂OH (not PhOH) can be the solvent of this reaction. (pK₂ rules is not considered!)

10.0

Redox potentials are to redox catalysis

Arene trifluoromethylation

Zhang, B., Mück-Lichtenfeld, C., Daniliuc, C. G. & Studer, A. Angew. Chem. Int. Ed. 2013, 52, 10792.

Summary

- 1. The observation that many different 'catalysts' work for the same reaction may be a clue to electron-catalyzed reactions.
- 2. Redox potentials are to redox catalysis what pK_a is to acid/base catalysis.
- 3. The unifying concept of 'the electron as a catalyst' provides a framework to identify relationships between existing reactions, to solve problems with inefficient reactions, and to design new reactions and sequences of reactions.

Thanks for your attention!