

Letter

Divergent Generation of the Difluoroalkyl Radical and Difluorocarbene via Selective Cleavage of C–S Bonds of the Sulfox-CF₂SO₂Ph Reagent

Shali Li, Xiu Wang, Yide Yang, Chuanfa Ni, and Jinbo Hu*

Sulfox-CF₂SO₂Ph is selectively removed (followed by α -elimination of the arylsulfoximidoyl group).

T he selective introduction of fluorine atoms or fluorinated moieties into organic molecules can often bring about profound changes in the latter's physical and biological properties. For instance, the difluoromethyl (CF₂H) and difluoroalkyl (CF₂R, where $R \neq H$) groups have found wide applications in pesticides,¹ functional materials,² and pharmaceuticals.³ The synthesis of difluoromethylated and difluoroalkylated compounds generally relies on the use of corresponding CF₂H- and CF₂R-transfer reagents,⁴ such as Si-based,⁵ Zn-based,⁶ P-based,⁷ I-based,⁸ and S-based⁹ difluoromethylation and difluorsing which the difluoromethyl sulfoximines¹⁰ and sulfones^{9,11} have attracted a great deal of attention owing to their unique reactivity in organic synthesis.

Highly tunable functionalities of difluoroalkyl sulfoximine and sulfone reagents showed divergent reactivities and selectivities under different reaction conditions. Hu and coworkers reported that N-tosyl-S-difluoromethyl-S-phenylsulfoximine $[PhS(O)NTsCF_2H]$ could release diffuorocarbene in the presence of NaH, trapped by S-, N-, and C-nucleophiles (Scheme 1a, left).^{10a} On the contrary, the photocatalysis rendered PhS(O)NTsCF₂H as a source of difluoromethyl radical species for oxidifluoromethylation of alkenes.¹² A similar activation strategy was used in the case of difluoromethyl phenyl sulfone (PhSO₂CF₂H), in which the deprotonation by LHMDS as a base produced a nucleophilic PhSO₂CF₂⁻ species,¹³ while the electrophilic PhSO₂CF₂ radical species was obtained under electrochemical conditions (Scheme 1b).¹⁴ However, the different reactivities and selectivities of difluoroalkylated reagents bearing both sulfoximine and sulfone functionalities have never been reported (Scheme 1c).

Scheme 1. Tuning the Reactivity of Difluoromethylated Sulfoximines and Sulfones

To explore the reaction conditions to tune the reactivity and selectivity of sulfone and sulfoximine within the same molecule, we tried to synthesize Sulfox-CF₂SO₂Ph reagent **1a** from SulfoxFluor and PhSO₂CF₂H. Notably, the practical synthetic methods for SulfoxFluor on a large scale have been developed by us.¹⁵ The treatment of SulfoxFluor and PhSO₂CF₂H by LiHMDS and HMPA afforded product **1a** in 77% yield and 97% purity, together with 3% (PhSO₂)₂CF₂ (Scheme 2). The reduction potential of **1a** was found to be -0.939 V (see the Supporting Information for details), which

Received:	December 7, 2023
Revised:	January 11, 2024
Accepted:	January 12, 2024
Published:	January 18, 2024

Scheme 2. Synthetic Route of 1a

indicates that 1a is easily reduced under a single electrontransfer process. With target compound 1a in hand, we next investigated which C–S bond of 1a would be preferentially cleaved and whether the different reaction conditions could control the selective cleavage of each C–S bond.

Initially, the selective C-S bond cleavage of 1 in the photocatalyzed radical diffuoroalkylation of 1,1-diphenylethylene (2a) was evaluated (Table 1). Notably, the

Table 1. Optimization of the Reaction Conditions

^{*a*}Standard reaction conditions: **1a** (0.24 mmol, 1.2 equiv), **2a** (0.2 mmol), *fac*-Ir(ppy)₃ (2 mol %), acetone (4.5 mL), H₂O (0.5 mL), blue LEDs, room temperature, 1 h, Ar. ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy using PhOCF₃ as an internal standard.

sulfoximine moiety of 1a was predominantly cleaved to generate the PhSO₂CF₂ radical species, which was used to react with alkene 2a. Under the irradiation of blue LEDs and catalysis of fac-Ir(ppy)₃ (2.0 mol %), alkene 2a (1.0 equiv) smoothly reacted with 1a (1.2 equiv) in acetone and water at room temperature in 1 h, affording oxy(phenylsulfonyl)difluoromethylation product 3a in 95% NMR yield (entry 1). When the nonchlorinated version of reagent 1b was used instead of 1a under the standard reaction conditions, product 3a was produced in 99% NMR yield, which rules out the influence of a chlorine substituent on the selective C-S bond cleavage of 1a (entry 2). Other common photocatalysts such as Eosin Y and $Ru(bpy)_3 \cdot 6H_2O$ failed to yield product 3a, probably due to their reduction potentials being lower than that of fac-Ir(ppy)₃ (entries 3 and 4, respectively). fac-Ir(ppy)₃ in combination with white LEDs also succeeded in catalyzing this transformation (entry 5). Starting material 1a was completely recovered in the absence of either light or a photocatalyst (entry 6 or 7, respectyively). The decreased yield of 3a was observed when this reaction was performed in air (entry 8). This transformation could be inhibited in the presence of radical scavengers such as TEMPO and 1,4benzoquinone, which supports the involvement of the $PhSO_2CF_2$ radical species during this process (entry 9).

873

To demonstrate the reactivity of 1a as a (phenylsulfonyl)difluoromethyl radical source under the optimized reaction conditions (Table 1, entry 1), a wide range of styrenes were examined (Scheme 3). Using α -substituted styrenes, 1,1-

Scheme 3. Substrate Scope of Radical (Phenylsulfonyl)difluoromethylation with $1a^{a,b}$

^{*a*}Reaction conditions: 1a (0.24 mmol, 1.2 equiv), 2 (0.2 mmol), fac-Ir(ppy)₃ (2 mol %), acetone (4.5 mL), H₂O (0.5 mL), blue LEDs, room temperature, 1 h, Ar. ^{*b*}Isolated yields. ^{*c*}On a 1 mmol scale, 4 h. ^{*d*}Using MeOH instead of H₂O. ^{*e*}Reaction conditions: **3b** (0.3 mmol), Mg (6 mmol, 20 equiv), BrCH₂CH₂Br (12 mol %), MeOH (4.5 mL), 3 h, room temperature, in air.

diphenyl ethylene and α -methylstyrenes, this new synthetic method gave products **3a**-**3d** in good yields (on a 0.2 or 1 mmol scale). Various styrenes with an electron-rich group such as phenyl (**2f**), methyl (**2g**-**2i**), and phenoxyl (**2j**) were all compatible with the current reaction conditions, affording products **3f**-**3j**, respectively, in 73-90% yields. Styrenes bearing different halogens at different positions (**2k**-**2o**) were also viable (**3k**-**3o**, respectively). In addition, when a CF₃ group is substituted at the *meta* position of styrene, the corresponding product **3p** was obtained in low yield (36%). Moreover, multiple functionalities and heteroaryl groups on the styrenes were compatible with this reaction, and the corresponding products **3q** and **3r** were formed in 78% and 50% yields, respectively. For the reactions with 4-methoxystyrene (2s) and 4-hydrostyrene (2t), methanol was used as the oxylation agent, and products 3s and 3t were obtained in 66% yield, respectively. Finally, desulfonylation of 3b was successfully conducted in the presence of Mg and methanol to give difluoromethylated product 4 in 69% yield.

Inspired by the aforementioned results, we further discovered that 1a could act as a difluorocarbene precursor under basic conditions (Scheme 4). Various thiophenols or

^{*a*}Reaction conditions: 1a (1.0 mmol, 2.0 equiv), 5 (0.5 mmol, 1.0 equiv), KOH (5.0 equiv), CH₃CN (3.5 mL), H₂O (1.0 mL), room temperature, 1 h, air. ^{*b*}Isolated yields. ^{*c*}Reactions were performed at 50 °C. ^{*d*}Using 1b instead of 1a. The yields were determined by ¹⁹F NMR spectroscopy using PhOCF₃ as an internal standard.

phenols could smoothly react with 1a (2.0 equiv) in the presence of KOH (5.0 equiv) in MeCN and H₂O at room temperature for 1 h. As shown in Scheme 4, the difluoromethylation of thiophenols gave difluoromethyl phenyl sulfides (6a-6d) in 31-61% yields. Furthermore, it was found that this synthetic protocol was efficient for the difluoromethylation of naphthols 5e-5h (in 52-67% yields). When a phenyl group of phenols was substituted at the ortho position, O-difluoromethylated product 6i was obtained in a yield (48%) lower than that with *para*-substituted phenol (**6g**, 69%). The phenols bearing electron-withdrawing groups were successfully difluoromethylated to give the corresponding products 61 and 6n-6q in 47-88% yields. It is noteworthy that when p-nitrophenol 51 was subjected to this transformation, product 6l was obtained in a high yield (88%). When reagent 1b was used instead of 1a under the standard reaction conditions, the same product 61 was also obtained in 88% yield. Furthermore, an alkenyl group on phenol could be well tolerated in this reaction, and product 6m was obtained in 59% yield. It is hypothesized that KOH attacked the sulfur atom of the phenylsulfone moiety of la to generate $ArS(O)NTsCF_2^{-}$ and the benzenesulfonate ion. The in situformed difluorocarbene [from highly unstable ArS(O)- $NTsCF_2^{-}$] was captured by the S- and O-nucleophiles, delivering the difluoromethylated products after protonation.

Indeed, the benzenesulfonate ion was detected by HPLC (see Scheme S1).

In summary, we have developed a novel difluoroalkylation reagent, 1, which is prepared from commercially available and inexpensive SulfoxFluor and PhSO₂CF₂H. This newly developed reagent 1 could act as an amphoteric synthetic equivalent of the (phenylsulfonyl)difluoromethyl radical and difluorocarbene. On one hand, under photocatalysis, the sulfoximine moiety of 1 is selectively removed, which enables radical (phenylsulfonyl)difluoromethylation of alkenes. On the other hand, under basic conditions, the sulfonyl moiety of 1 is cleaved (followed by α -elimination of the sulfoximidoyl moiety), and the generated difluorocarbene is captured by Sand O-nucleophiles to give corresponding difluoromethylated products. Our results showcase the unique reactivity of the newly synthesized Sulfox-CF₂SO₂Ph reagent and provide intriguing insights into the fluorinated sulfone and sulfoximine chemistry.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.3c04116.

Experimental procedures, characterization data and copies of 1 H, 19 F, and 13 C NMR spectra of new compounds, single-crystal data of **1a**, and cyclic voltammetry study of **1a** (PDF)

Accession Codes

CCDC 2298036 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Jinbo Hu – Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; orcid.org/0000-0003-3537-0207; Email: jinbohu@ sioc.ac.cn

Authors

874

- Shali Li Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Xiu Wang Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

- Yide Yang Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- **Chuanfa Ni** Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.3c04116

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program of China (2021YFF0701700), the National Natural Science Foundation of China (22271299 and 22261132514), the Natural Science Foundation of Shandong Province (ZR2023LFG003), and the Shandong Dongyue Polymer Materials Co. Ltd.

REFERENCES

(1) (a) Bhat, A. P.; Pomerantz, W. C. K.; Arnold, W. A. Finding Fluorine: Photoproduct Formation during the Photolysis of Fluorinated Pesticides. *Environ. Sci. Technol.* **2022**, *56*, 12336. (b) Wang, Q.; Song, H.; Wang, Q. Fluorine-Containing Agrochemicals in the Last Decade and Approaches For Fluorine Incorporation. *Chin. Chem. Lett.* **2022**, *33*, 626–642.

(2) (a) Vaney, J. B.; Vignolle, B.; Demourgues, A.; Gaudin, E.; Durand, E.; Labrugere, C.; Bernardini, F.; Cano, A.; Tence, S. Topotactic Fluorination of Intermetallics as an Efficient Route towards Quantum Materials. *Nat. Commun.* **2022**, *13*, 1462. (b) Yang, J.; Hu, W.; Yi, J.; Zhao, J.; Xu, L. Effect of Fluorine Substitution on Properties of Hole-Transporting Materials for Perovskite Solar Cells. *Dyes Pigm.* **2022**, *204*, 110370. (c) Zhou, H. P.; Chen, G. T.; Yao, L. S.; Zhang, S.; Feng, T. T.; Xu, Z. Q.; Fang, Z. X.; Wu, M. Q. Plasma-Enhanced Fluorination of Layered Carbon Precursors for High-Performance CFx Cathode Materials. *J. Alloy. Compd.* **2023**, *941*, 168998. (d) Sirirungruang, S.; Ad, O.; Privalsky, T. M.; Ramesh, S.; Sax, J. L.; Dong, H.; Baidoo, E. E. K.; Amer, B.; Khosla, C.; Chang, M. C. Y. Engineering Site-Selective Incorporation of Fluorine into Polyketides. *Nat. Chem. Biol.* **2022**, *18*, 886–893.

(3) Wang, R.; Xiao, P.; Yu, B.; Sun, Y.; Li, J.; Zhang, L.; Jiang, X.; Wu, W. Fluorination Effects on the Drug Delivery Property of Cylindrical Polymer Brushes. *ACS Appl. Bio Mater.* **2022**, *5*, 5924–5932.

(4) For selected recent reviews of difluoromethylation and difluoroalkylation reactions and reagents, see: (a) Dong, D.-Q.; Yang, S.-H.; Wu, P.; Wang, J.-Z.; Min, L.-H.; Yang, H.; Zhou, M.-Y.; Wei, Z.-H.; Ding, C.-Z.; Wang, Y.-L.; Gao, J.-H.; Wang, S.-J.; Wang, Z.-L. Copper-Catalyzed Difluoroalkylation Reaction. Molecules 2022, 27, 8461. (b) Purushotam; Bera, A.; Banerjee, D. Recent Advances on Non-Precious Metal-Catalyzed Fluorination, difluoromethylation, trifluoromethylation, and Perfluoroalkylations of N-Heteroarenes. Org. Biomol. Chem. 2023, 21, 9298-9315. (c) Sap, J. B. I.; Meyer, C. F.; Straathof, N. J. W.; Iwumene, N.; Am Ende, C. W.; Trabanco, A. A.; Gouverneur, V. Chem. Soc. Rev. 2021, 50, 8214-8247. (d) Saranya, P. V.; Aneeja, T.; Anilkumar, G. Palladium-Catalyzed Difluoromethylation and Difluoroalkylation Reactions: An Overview. Appl. Organomet. Chem. 2022, 36, No. e6503. (e) Britton, R.; Gouverneur, V.; Lin, J.-H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J.-C.; Hu, J. Contemporary Synthetic Strategies in Organofluorine Chemistry. Nat. Rev. Methods Primers 2021, 1, No. e47. (f) Rong, J.;

Ni, C.; Hu, J. Metal-Catalyzed Direct Difluoromethylation Reactions. *Asian J. Org. Chem.* **2017**, *6*, 139–152. (g) Ni, C.; Zhu, L.; Hu, J. Advances in Transition-Metal-Mediated Di- and Monofluoroalkylations. *Acta Chim. Sinica* **2015**, *73*, 90–115.

(5) (a) Josten, R.; Ruppert, I. CFCl₂-Substituierte Silane aus Chlorsilanen. J. Organomet. Chem. 1987, 329, 313-318. (b) Kornii, Y.; Shablykin, O.; Tarasiuk, T.; Stepaniuk, O.; Matvienko, V.; Aloshyn, D.; Zahorodniuk, N.; Sadkova, I. V.; Mykhailiuk, P. K. Fluorinated Aliphatic Diazirines: Preparation, Characterization, and Model Photolabeling Studies. J. Org. Chem. 2023, 88, 1-17. (c) Liu, A.; Ni, C.; Xie, Q.; Hu, J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF2Br. Angew. Chem., Int. Ed. 2023, 62, No. e202217088. (d) Yang, X.; Lu, D.; Guan, W.; Yin, S. F.; Kambe, N.; Qiu, R. Synthesis of (Deoxy)difluoromethylated Phosphines by Reaction of R₂P(O)H with TMSCF₃ and Their Application in Cu(I) Clusters in Sonogashira Coupling. J. Org. Chem. 2022, 87, 7720-7733. (e) Wang, X.; Pan, S.; Luo, Q.; Wang, Q.; Ni, C.; Hu, J. Controllable Single and Double Difluoromethylene Insertions into C-Cu Bonds: Copper-Mediated Tetrafluoroethylation and Hexafluoropropylation of Aryl Iodides with TMSCF₂H and TMSCF₂Br. J. Am. Chem. Soc. 2022, 144, 12202-12211.

(6) (a) Ispizua-Rodriguez, X.; Krishnamurti, V.; Carpio, V.; Barrett, C.; Prakash, G. K. S. Copper-Catalyzed Synthesis of Difluoromethyl Alkynes from Terminal and Silyl Acetylenes. J. Org. Chem. 2023, 88, 1194-1199. (b) Ispizua-Rodriguez, X.; Munoz, S. B.; Krishnamurti, V.; Mathew, T.; Prakash, G. K. S. Direct Synthesis of Tri-/ Difluoromethyl Ketones from Carboxylic Acids by Cross-Coupling with Acyloxyphosphonium Ions. Chem. 2021, 27, 15908-15913. (c) Monfette, S.; Fang, Y.-Q.; Bio, M. M.; Brown, A. R.; Crouch, I. T.; Desrosiers, J.-N.; Duan, S.; Hawkins, J. M.; Hayward, C. M.; Peperni, N.; Rainville, J. P. Continuous Process for Preparing the Difluoromethylating Reagent [(DMPU)₂Zn(CF₂H)₂] and Improved Synthesis of the ICHF2 Precursor. Org. Process Res. Dev. 2020, 24, 1077-1083. (d) Pan, F.; Boursalian, G. B.; Ritter, T. Palladium-Catalyzed Decarbonylative Difluoromethylation of Acid Chlorides at Room Temperature. Angew. Chem., Int. Ed. 2018, 57, 16871-16876. (7) (a) Ren, X.; Liu, Q.; Wang, Z.; Chen, X. Visible-light-induced Direct Hydrodifluoromethylation of Alkenes with Difluoromethyltriphenylphosphonium Iodide Salt. Chin. Chem. Lett. 2023, 34, 107473. (b) Wang, H.; Huang, Y.; Wu, Q.; Lu, J.; Xu, Y. L.; Chen, Y. Y. Visible-Light-Promoted bis(Difluoromethylation)/Cyclization of 2-Vinyloxy Arylalkynes to Prepare Benzofuran Derivatives. J. Org. Chem. 2022, 87, 13288-13299. (c) Mao, L. L.; Zhou, A. X.; Zhu, X. H.; Peng, H.; Quan, L. X.; Wan, J. P.; Yang, S. D. Visible-Light-Mediated Tandem Difluoromethylation /Cyclization of Alkenyl Aldehydes toward CF2H-Substituted Chroman-4-one Derivatives. J. Org. Chem. 2022, 87, 12414-12423. (d) Liang, J.; Dong, L.; Qian, F.; Kong, Y.; Wang, M.; Xu, X.; Shao, X.; Li, Z. A Bench-stable Reagent for C-4 Selective Deuteriodifluoromethylation of Azines. Chin. Chem. Lett. 2022, 33, 4817-4821.

(8) (a) Gedde, O. R.; Bonde, A.; Golbaekdal, P. I.; Skrydstrup, T. Pd-Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF₂H Generated ex Situ. *Chem. - Eur. J.* **2022**, *28*, No. e202200997. (b) Motohashi, H.; Mikami, K. Nickel-Catalyzed Aromatic Cross-Coupling Difluoromethylation of Grignard Reagents with Difluoroiodomethane. *Org. Lett.* **2018**, *20*, 5340–5343. (c) Hori, K.; Motohashi, H.; Saito, D.; Mikami, K. Precatalyst Effects on Pd-Catalyzed Cross-Coupling Difluoromethylation of Aryl Boronic Acids. *ACS Catal.* **2019**, *9*, 417–421.

(9) (a) Jia, R.; Wang, X.; Hu, J. Recent Advance in Synthetic Applications of Difluoromethyl Phenyl Sulfone and its Derivatives. *Tetrahedron Lett.* **2021**, 75, 153182. (b) Hu, J. Nucleophilic, Radical, and Electrophilic (Phenylsulfonyl) difluoromethylations. *J. Fluorine Chem.* **2009**, 130, 1130–1139. (c) Ni, C.; Hu, M.; Hu, J. Good Partnership Between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis. *Chem. Rev.* **2015**, 115, 765–825. (d) Wang, X.; Hu, J. Sulfur-Based Organo-fluorine Reagents for Selective Fluorination, Fluoroalkylation, and

Fluoroolefination Reactions. Phosphorus Sulfur Silicon Relat. Elem. 2024, 199, 10–22.

(10) (a) Zhang, W.; Wang, F.; Hu, J. N-Tosyl-S-difluoromethyl-S-Phenylsulfoximine: a New Difluoromethylation Reagent for S-, N-, and C-nucleophiles. Org. Lett. 2009, 11, 2109-2112. (b) Koike, T. Fluoroalkyl Sulfoximines for Versatile Photocatalytic Radical Fluoroalkylations. Chem. Rec. 2023, 23, No. e202300032. (c) Chaabouni, S.; Lohier, J.-F.; Barthelemy, A.-L.; Glachet, T.; Anselmi, E.; Dagousset, G.; Diter, P.; Pegot, B.; Magnier, E.; Reboul, V. One-Pot Synthesis of Aryl- and Alkyl S-Perfluoroalkylated NH-Sulfoximines from Sulfides. Chem. - Eur. J. 2018, 24, 17006-17010. (d) Duhail, T.; Messaoudi, S.; Dagousset, G.; Marrot, J.; Andre-Barres, C.; Magnier, E.; Anselmi, E. Benzodithiazoles-Sulfoximines: Preparation, Properties and Reactivities as Radical Perfluoroalkylating Agents. Adv. Synth. Catal. 2023, 365, 2392-2399.

(11) (a) Sap, J. B. I.; Meyer, C. F.; Ford, J.; Straathof, N. J. W.; Durr, A. B.; Lelos, M. J.; Paisey, S. J.; Mollner, T. A.; Hell, S. M.; Trabanco, A. A.; Genicot, C.; Am Ende, C. W.; Paton, R. S.; Tredwell, M.; Gouverneur, V. [¹⁸F] Difluorocarbene for Positron Emission Tomography. *Nature* **2022**, *606*, 102–108. (b) Wu, C.; Shen, X.; Dai, J.; Xu, J.; Xu, H. Synthesis of (Benzenesulfonyl)difluoromethyl Thioethers from ((Difluoromethyl)sulfonyl)benzene and Organothiocyanates Generated in Situ. *Org. Biomol. Chem.* **2021**, *19*, 7607– 7610. (c) Wei, Z.; Miao, W.; Ni, C.; Hu, J. Iron-Catalyzed Fluoroalkylation of Arylborates with Sulfone Reagents: Beyond the Limitation of Reduction Potential. *Angew. Chem., Int. Ed.* **2021**, *60*, 13597–13602.

(12) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF₂H-Containing Alcohols. *Chem.* **2016**, *22*, 1262–1265. (13) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Convenient Synthesis of Difluoromethyl Alcohols from Both Enolizable and Non-Enolizable Carbonyl Compounds with Difluoromethyl Phenyl Sulfone. *Eur. J. Org. Chem.* **2005**, *2005*, 2218–2223.

(14) Kim, S.; Hwang, K. H.; Park, H. G.; Kwak, J.; Lee, H.; Kim, H. Radical Hydrodifluoromethylation of Unsaturated C–C Bonds via an Electroreductively Triggered Two-pronged Approach. *Commun. Chem.* **2022**, *5*, 96.

(15) (a) Guo, J.; Kuang, C.; Rong, J.; Li, L.; Ni, C.; Hu, J. Rapid Deoxyfluorination of Alcohols with N-Tosyl-4-chlorobenzenesulfonimidoyl Fluoride (SulfoxFluor) at Room Temperature. *Chem. - Eur. J.* **2019**, *25*, 7259–7264. (b) Guo, J.; Wang, X.; Ni, C.; Wan, X.; Hu, J. SulfoxFluor-enabled Deoxyazidation of Alcohols with NaN₃. *Nat. Commun.* **2022**, *13*, 2752. (c) Liu, R.; Zhou, X.-C.; He, X.-Y.; Li, Y.-Q.; Zheng, W.; Wang, X.; Guo, J.; Ni, C.; Hu, J. Modified and Scalable Synthesis of N-Tosyl-4-Chlorobenzenesulfonimidoyl Fluoride (SulfoxFluor): Direct Imidation of Sulfinyl Chlorides with Chloramine-T Trihydrate. *Org. Process Res. Dev.* **2022**, *26*, 380–386.