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From intramolecular cyclization to intermolecular
hydrolysis: TMSCF2Br-enabled carbonylation of
aldehydes/ketones and amines to
α-hydroxyamides†

An Liu, Shuo Sun, Qiqiang Xie, Rumin Huang, Taige Kong, Chuanfa Ni and
Jinbo Hu *

A metal-free multicomponent strategy has been developed for the synthesis of various α-hydroxyamides

via carbonylation of aldehydes/ketones and amines enabled by the difluorocarbene reagent TMSCF2Br

(TMS = trimethylsilyl). The TMS-protecting group derived from TMSCF2Br plays a crucial role in the tun-

ability of the reaction pathways from intramolecular cyclization to intermolecular hydrolysis. The synthetic

utility has been demonstrated by the late-stage modification of several drug-related molecules and the

highly selective synthesis of 18O-labeled α-hydroxyamides from H2
18O.

Introduction

α-Hydroxyamides are found in pharmaceuticals, agrochemicals
and natural products, and serve as useful synthetic building
blocks.1 The traditional approaches for the synthesis of
α-hydroxyamides require the preparation of α-hydroxy acids,
followed by the protection of the hydroxy groups (prior to the
condensation with amines) and the final deprotection.2 And
more convenient methods via the nucleophilic addition of car-
bonyl compounds with carbamoyl anions such as carbamoyl-
lithiums,3 carbamoylsilanes4 or its equivalent isocyanides5 for
the assembly of α-hydroxyamides have also been well-docu-
mented. Even though these established two-component
methods have made remarkable progress,6 they still suffer
from multiple-step operations, harsh reaction conditions or
limited substrate scope. From a retrosynthetic viewpoint, a
three-component method is expected for streamlined access to
α-hydroxyamides from abundant carbonyl compounds, suit-
able carbonyl sources and amines. Indeed, three-component
transition-metal-catalyzed carbonylation reactions with simple
starting materials and amines have attracted widespread atten-
tion owing to the use of CO or CO surrogates as carbonyl
sources.7 And a variety of readily available feedstocks including
aryl/vinyl (pseudo)halides,8 alkenes/alkynes9 and even nucleo-

philes10 (organoboronic acids, organosilanes, C–H activation,
etc.) have been utilized as starting materials in this area.
Surprisingly, carbonyl compounds, which are some of the
most abundant feedstocks, have not yet been employed in
such three-component reactions for the synthesis of various
α-hydroxyamides.

In 2014, our group investigated the rearrangement of fluor-
oepoxides involving simultaneous cleavage and formation of
C–F bonds.11 More recently, Song and co-workers reported a
similar process utilizing fluoroepoxides generated in situ from
intramolecular tandem reactions of 2-aminoarylketones with
difluorocarbene.12 The 1,2-fluorine migration of fluoroepox-
ides generated in situ from difluorocarbene-involved inter-
molecular tandem reactions of aldehydes with amines was
also accomplished by us.13 In Song’s work, it was found that
water had almost no effect on both cyclization of the fluoroi-
minium intermediate and rearrangement of the fluoroepoxide
intermediate (Scheme 1A).12 In this context, we were interested
to explore the possibility of a new nucleophile (such as water,
alcohols or other oxygen sources) competitively reacting with
the fluoroiminium intermediate,13 which could change the
reaction pathway14 and bring about a new method for modular
access to various α-hydroxyamides (Scheme 1B). We noticed
that the intramolecular cyclization of the fluoroiminium inter-
mediate was promoted by external KF in our previous
α-fluoroamide system.13 Furthermore, the addition of KF could
facilitate the removal of the TMS-protecting group by the fluor-
oiminium intermediate, suggesting that the TMS-protecting
group somewhat decelerated the intramolecular cyclization of
the fluoroiminium intermediate to deliver the fluoroepoxide
intermediate. With these in mind, we envisioned that the
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addition of excess water or alcohols (more nucleophilic than
water) to our previous α-fluoroamide system with reduced or
even no use of KF could switch the intrinsic intramolecular
cyclization pathway to the intermolecular reaction pathway,
affording the desired α-hydroxyamides.

Results and discussion

We initiated our investigation by comparing the effects of
different types of alcohols (more nucleophilic than water) on
our previous α-fluoroamide system.13 When the tertiary
alcohol t-BuOH was added to this system, the intramolecular
pathway involving the fluoroepoxide intermediate could occur
along with the formation of 9′ in 29% yield (Table 1, entry 1).
Importantly, we found that some of the fluoroiminium inter-
mediate molecules were successfully intercepted by t-BuOH
albeit without subsequent transformations to afford 9 due to
the difficulty of the t-Bu–O bond cleavage. Even though the use
of the secondary alcohol i-PrOH or the primary alcohol MeOH
as a nucleophile obviously suppressed the intramolecular cycli-
zation pathway, the desired product 9 could not be observed
(Table 1, entries 2 and 3). Benzyl alcohol (BnOH) was therefore
considered as a more suitable oxygen source for this reaction
due to the easier removal of the benzyl group, and we did
obtain the desired α-hydroxyamide 9 in 22% yield with the
addition of BnOH (Table 1, entry 4). The reduced use of KF
could, as we expected initially, slightly improve the yield of 9
(Table 1, entries 4–6). To our surprise, the use of weakly

nucleophilic water (instead of benzyl alcohol) dramatically
improved the yield of the target product α-hydroxyamide 9
(80%), which was distinctly different from the result reported
by the Song group (Table 1, entry 7) (Scheme 1A).12 Fine
tuning of the reaction temperature and the ratio of the
reagents brought about further improvement in the yield, and
product 9 was obtained in 88% yield (Table 1, entry 8). Next,
screening of solvents revealed that 1,4-dioxane remained the
optimal choice for this transformation (Table 1, entries 9 and
10). Considering that the synthesis of the desired
α-hydroxyamides did not involve the incorporation of fluorine
atoms, the use of difluorocarbene might be unnecessary.
However, although TMSCFCl2, TMSCFBr2 and TMSCCl2Br were
expected to undergo this tandem reaction as other dihalocar-
bene precursors,15 we failed to obtain the desired product. In
addition, common difluorocarbene reagents such as
BrCF2COONa, BrCF2COOEt and BrCF2CP(O)(OEt)2 were also
screened, and the desired transformations were not observed
even in the presence of activators. To some degree, these fail-
ures emphasized the uniqueness of the commercially available
TMSCF2Br, which was initially developed by us as a difluoro-
carbene reagent.16

With the optimized conditions in hand, we next turned our
attention to evaluating the versatility of this multicomponent
tandem reaction (Scheme 2). The synthesis of a variety of aro-
matic aldehydes featuring diverse electronic and steric pro-
perties was first attempted by choosing TMSCF2Br and N,N-di-
methylbenzylamine as reaction partners, and the corres-
ponding products 5–22 were obtained in good to excellent
yields under the standard conditions (Scheme 2A). Various
substituents including both electron-donating groups [such as

Scheme 1 Reaction design from intramolecular cyclization to inter-
molecular hydrolysis.

Table 1 Optimization of the reaction conditionsa

Entry KF (equiv.) T (°C) Additive

Yield (%)

9 9′

1 4 100 t-BuOH — 29
2 4 100 i-PrOH — 2
3 4 100 MeOH — n.d.
4 4 100 BnOH 22 n.d.
5 2 100 BnOH 26 n.d.
6 0 100 BnOH 28 n.d.
7b 0 100 H2O 80 n.d.
8b,c 0 rt H2O 88 n.d.
9b,c,d 0 rt H2O 78 n.d.
10b,c,e 0 rt H2O 69 n.d.

a Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), TMSCF2Br
(0.22 mmol, 1.1 equiv.), BnNMe2 (0.22 mmol, 1.1 equiv.), KF, rt, 1 h.
Then additive (0.4 mmol, 2.0 equiv.), T, 0.5 h. Yields were determined
by 19F NMR using 1-fluoronaphthalene as an internal standard.
b Additive (0.2 mL). c TMSCF2Br (0.4 mmol, 2.0 equiv.), BnNMe2
(0.4 mmol, 2.0 equiv.). d THF as solvent. eDMF as solvent. n.d. = not
detected.
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alkyl (5–6), ether (7) and methylthiol (8)] and electron-with-
drawing groups [such as halogen (9–11), nitro (12), cyano (13),
trifluoromethyl (14–15) and ester (16)] at the para position of
the phenyl ring were found to be compatible with the reaction.

2-Chlorobenzaldehyde and 4-chlorobenzaldehyde showed
similar reactivity in this transformation with the formation of
the corresponding products 17 and 10 in similar yields (92%
and 91%, respectively), indicating that the steric hindrance

Scheme 2 Substrate scope. Reaction conditions: 1 (0.5 mmol, 1.0 equiv.), TMSCF2Br (1.0 mmol, 2.0 equiv.), 2 (1.0 mmol, 2.0 equiv.), 1,4-dioxane
(5 mL), rt, 1 h. Then H2O (0.5 mL), rt, 0.5 h; isolated yields.
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arising from the ortho-substituent did not have much influ-
ence on the present reaction. Aldehydes with different substi-
tution patterns participated in this reaction smoothly,
although the yield of pentafluorobenzaldehyde (19, 76%) was
slightly lower than that of 4-methoxy-3-nitrobenzaldehyde (18,
93%). Aromatic aldehydes containing extended π-systems
including 4-phenylbenzaldehyde, 1-naphthaldehyde and
benzo[b]thiophene-3-carbaldehyde were also compatible with
this reaction, affording the corresponding products 20–22 in
70–84% yields. Notably, this reaction was not limited to aro-
matic aldehydes, and it was also applicable to both enolizable
and non-enolizable alkyl aldehydes (23–25). More importantly,
unlike our previous work in which ketones failed to provide
α-fluoroamides,13 this new intermolecular hydrolysis system
was extended successfully to aromatic and alkyl ketones,
giving the corresponding α-hydroxyamides (26–27) in good
yields.

We subsequently focused on investigating the substrate
scope with respect to benzylamines by selecting 2-naphthalde-
hyde as the model reaction partner (Scheme 2B). A wide range
of structurally diverse open-chain and cyclic benzyldialkyla-
mines proved to be suitable starting materials to deliver the
desired α-hydroxyamides in good to excellent yields. In the
case of open-chain benzylamines, both symmetrical and non-
symmetrical dialkyl-substituted benzylamines (such as
N-benzyl-N-ethylethanamine, N-benzyl-N-methyl-1-phenyl-
methanamine and others) underwent the multicomponent
reaction efficiently, affording the corresponding products
(28–32) in 72–90% yields. In the case of cyclic benzylamines,
compared to 1-benzylpiperidine containing a six-membered
ring (33 vs. 34), 1-benzylazocane containing an eight-mem-
bered ring was unfavorable in this reaction and the desired
α-hydroxyamide (34) was obtained in a moderate yield. Various
substituents on the six-membered ring of cyclic benzylamines
had no significant effect and their corresponding products
(35–40) were isolated in 64–93% yields. The nucleophilicity of
4-benzylmorpholine was weakened by the ether group at the
β-position of the nitrogen atom, leading to a slightly lower
yield of 36 (64%).

To further demonstrate the utility of this established
method and considering the significant roles of amides in
pharmaceuticals,17 we successfully accomplished amide bond
linkages for complex molecules by using benzyl derivatives of
nitrogen-containing drug-related molecules (Scheme 3A).
Ivabradine (for chronic heart failure), fluoxetine (for
depression), dipenhydramine (for allergies) and donepezil (for
Alzheimer’s disease) were transformed smoothly to the corres-
ponding α-hydroxyamide derivatives (41–44) in 63–89% yields.
And this method could also be scaled up to the gram-scale
without much loss of efficiency, as demonstrated by the syn-
thesis of 9 (1.6 g, 81%) (Scheme 3B). Additionally, stable 18O-
labeled molecules have been widely applied for isotopic
tracing in various fields, and H2

18O serves as one of the main
18O sources for their synthesis.18 In this context, we soon rea-
lized that the combination of difluorocarbene and H2

18O as
the carbonyl equivalent could be utilized for highly selective

access to 18O-labeled α-hydroxyamides with high 18O-isotopic
purity. To our delight, we successfully isolated the 18O-labeled
α-hydroxyamide 45 in 80% yield (97% 18O-isotopic purity) by
using H2

18O instead of H2O under the standard conditions
(Scheme 3C).

Notably, the isolation of the 18O-labeled α-hydroxyamide 45
also provides comprehensive insights into the reaction mecha-
nism. The mass spectrometric fragmentation of the 18O-
labeled acyl radical cation (m/z = 74) with 97% 18O-isotopic
purity confirmed that the 18O-labeling occurred at the carbonyl
group rather than the hydroxyl group (Scheme 3B). Meanwhile,
this observation demonstrates that water (added to the reac-
tion mixture) intercepts the cyclization process of the fluoroi-
minium intermediate (leading to the 18O-labeled carbonyl
group) rather than the rearrangement of the fluoroepoxide
intermediate (leading to the 18O-labeled hydroxyl group),
which is consistent with our initial hypothesis. Next, we con-
ducted a series of monitoring experiments by GC-MS
(Scheme 4A) and 19F NMR (Scheme 4B) for mechanistic investi-
gations. A large amount of benzyl bromide (Scheme 4A (1))
and the fluorine signal of the α,α-difluoroamine intermediate
(Scheme 4B (1)) were observed before water was added to the
reaction system. Then the addition of water led to the dis-

Scheme 3 Synthetic applications (RCHO = 2-naphthaldehyde). For
reaction details, see the ESI.† Isolated yields. aThe diastereoisomer ratio
(dr) was determined by HPLC.
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appearance of the fluorine signal of the α,α-difluoroamine
intermediate (Scheme 4B (2)) with the generation of the
desired α-hydroxyamide (Scheme 4A (2)). In addition, the TMS-
protected α-hydroxyamide 46 was successfully isolated in 76%
yield when 2,2,2-trifluoro-1-phenylethan-1-one was subjected
to the standard conditions (Scheme 4C), which provided direct
evidence that the TMS-protecting group could inhibit the intra-
molecular cyclization of the fluoroiminium intermediate to
give fluoroepoxide (as shown in Scheme 1B). According to
these mechanistic investigations and our previous results,13 a
plausible mechanism is outlined in Scheme 4D. The
α,α-difluoroammonium intermediate A, generated in situ from
the three-component chain reaction of aldehydes, amines and
TMSCF2Br, undergoes debenzylation by the bromide ion, deli-
vering the α,α-difluoroamine intermediate B. Then β-fluoride
elimination of intermediate B leads to the formation of the
fluoroiminium intermediate C. Given that the TMS-protecting
group decelerates the intramolecular cyclization of the fluoroi-
minium intermediate, intermolecular nucleophilic addition of
the fluoroiminium intermediate C with water can proceed
smoothly. Finally, the desired α-hydroxyamide F is afforded
with subsequent defluorination and desilylation.

Conclusions

In summary, we have described an unprecedented and highly
efficient multicomponent strategy for the synthesis of structu-
rally valuable α-hydroxyamides from carbonyls (aldehydes or
ketones), amines and the difluorocarbene reagent TMSCF2Br
by switching the reaction pathways of the fluoroiminium inter-
mediate from intramolecular cyclization to intermolecular
hydrolysis. The key to the success of this process is that the
TMS-protecting group derived from TMSCF2Br decelerates the
intramolecular cyclization of the fluoroiminium intermediate,
which utilizes the unique structural advantage of TMSCF2Br.
This novel approach shows excellent functional group toler-
ance thanks to the mild reaction conditions, and all starting
materials used in this reaction are commercially available. The
late-stage modification of several nitrogen-containing drug-
related molecules further demonstrates the utility of rapid con-
struction of complex scaffolds for drug discovery. Significantly,
the combination of difluorocarbene and H2

18O as the carbonyl
equivalent provides a new opportunity for highly selective syn-
thesis of 18O-labeled α-hydroxyamides with high 18O-isotopic
purity, which has been largely ignored in organic chemistry.

Scheme 4 Mechanistic investigations and the proposed mechanism. For reaction details, see the ESI.†
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Further development of new reactions by intercepting the reac-
tion intermediates (such as C in Scheme 4D) in such multi-
component systems is underway in our laboratory.
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