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ABSTRACT: Two unprecedented and complementary synthetic strategies for S- and C-difluoromethylation of 2-substituted
benzothiazoles have been developed by taking advantage of the remarkably different reactivity of CF2H

− and 2-PySO2CF2
−

nucleophiles. A variety of structurally diverse difluoromethyl 2-isocyanophenyl sulfides and 2-difluoromethylated benzothiazoles
were synthesized with these two new synthetic protocols.

Isocyanides are versatile synthetic building blocks for the
synthesis of nitrogen-containing molecules.1 Their wide
applications in multicomponent reactions,2 transition-metal-
catalyzed isocyanide insertions,3 and radical cascade reac-
tions4,5 provide efficient access to an array of pharmaceutically
relevant molecules. In particular, 2-isocyanoaryl thioethers
could be used as radical acceptors in radical cyclization
reactions to construct 2-substituted benzothiazoles (Scheme
1a, path a),6 which are prevalently existing in various naturally
occurring compounds and drugs.7 However, despite the
remarkable progress in the cyclization of 2-isocyanoaryl
thioethers to 2-substituted benzothiazoles,6 its reverse process,
namely, the ring-opening reaction of 2-substituted benzothia-
zoles to give 2-isocyanoaryl thioethers, still remains unknown.

To date, the known reaction mode of 2-substituted
benzothiazoles is the nucleophilic aromatic substitution
(SNAr) at the C-2 position with a series of C-, N-, O- and S-
nucleophiles (Scheme 1a, path b).8 However, to the best of our
knowledge, the SNAr reaction between a fluoroalkyl
nucleophile and a 2-substituted benzothiazole has never been
reported. Difluoromethyl group (CF2H) can serve as a
lipophilic hydrogen bond donor, and a bioisostere of OH or
SH functionality.9 In this context, we initially attempted the
SNAr-type nucleophilic difluoromethylation of 2-substituted
benzothiazoles with (difluoromethyl)trimethylsilane10

(TMSCF2H, 2). To our surprise, the expected product 2-
difluoromethyl benzothiazole (6g) was not observed, and
instead, difluoromethyl 2-isocyanophenyl sulfide (3j) was
obtained in 24% yield (Scheme 1b). It is likely that an
unprecedented S-difluoromethylation-ring-opening elimination
tandem occurred.11 This unexpected result intrigued us to
investigate the nucleophilic difluoromethylation of 2-substi-
tuted benzothiazoles, especially the selectivity between SNAr
and aromatic ring opening reactions (Scheme 1c).
At the onset of our investigation, we chose 2-methanesul-

fonyl benzothiazole 1a as a model substrate and TMSCF2H
(2) as the difluoromethyl anion precursor, and the reaction
conditions were screened (Table 1). When a mixture of 1a (0.2
mmol), 2 (3 equiv), CsF (3 equiv) in DMF were stirred at
room temperature, neither ring-opening product 3a nor SNAr
product 6a was observed (entry 1). It is interesting that when
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Scheme 1. Transformations of 2-Isocyanoaryl Thioethers
and 2-Substituted Benzothiazoles
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0.7 equiv of water was added, 70% yield of the ring-opening
product 3a was formed (entry 2). To figure out the role of
water, we replaced water with another proton source methanol,
and found that 3a was formed in slightly lower yield (53%;
entry 3). Furthermore, when a mixture of 3a (0.2 mmol),
TMSCF2H (3 equiv), CsF (3 equiv) and DMF (1 mL) was
stirred at room temperature for 3 h in the absence of water,

compound 3a completely decomposed (Scheme S1 in
Supporting Information). These results indicate that water
serves as a proton source and quenches the unreacted
difluoromethyl anion (forming CH2F2), which diminishes the
decomposition of 3a. The amount of water was carefully
screened, and 0.7 equiv of water was identified as optimal for
the reaction (Table S2 in Supporting Information). In addition
to CsF, other Lewis base activators such as TBAT, KF, K2CO3,
and CsOH were tested, but all showed lower efficiency than
CsF in activating the Si−CF2H bond cleavage in DMF at room
temperature (entries 4−7). Notably, in all cases, no formation
of SNAr-type C-difluoromethylation product 6a was observed
during the current ring-opeing S-difluoromethylation reaction
(Table 1).
With the standard reaction conditions in hand (Table 1,

entry 2), the substrate scope of the ring-opening S-
difluoromethylation reaction with TMSCF2H was investigated
(Scheme 2a). First, the leaving group ability of different groups
at C-2 position of 1 was examined (LG = Cl, SO2Me, SO2Et,
SO2CH2F, and SO2CH2Ph), and in call cases the reaction
proceeded smoothly, affording product 3a in moderate to good
yields. Second, we chose 2-(methanesulfonyl)naphthothiazole
as a substrate in the reaction, and product 3b was obtained in
61% yield. The structure of 3b was confirmed by its single
crystal X-ray analysis. Third, benzothiazoles bearing electron-
donating groups (such as methyl, methoxyl and ethoxyl) are
amenable to the present ring-opening S-difluoromethylation
reaction, with the corresponding products 3c-3f being formed
in 60−70% yields. However, no desired product 3g was

Table 1. Optimization of the Reaction Conditions of Ring-
Opening S-Difluoromethylation of Benzothiazole 1a

entrya base additive

yield (%)b

3a 6a

1 CsF none 0 0
2 CsF H2O 70 (66) 0
3 CsF MeOH 53 0
4 TBAT H2O 33 0
5 KF H2O 6 0
6 K2CO3 H2O 14 0
7 CsOH H2O 9 0

aReaction conditions: 1a (0.2 mmol, 1 equiv), 2 (0.6 mmol, 3 equiv),
base (3 equiv), additive (0.7 equiv), DMF (1 mL), rt, 3 h. bYields
were determined by 19F NMR spectroscopy using PhCF3 as an
internal standard, and the isolated yield was shown in parentheses.

Scheme 2. Divergent S- and C-Difluoromethylation of 2-Substituted Benzothiazolesa

aIsolated yields. bYields were determined by 19F NMR spectroscopy using trifluorotoluene as an internal standard. cLG = SO2Me. dLG = SO2Ph.
eLG = Cl; 2.0 equiv of H2O were used in S-difluoromethylation. fPhSO2CF2H was used instead of 2-PySO2CF2H, THF (1.2 mL) was used instead
of CH2Cl2.

g6 mmol scale reaction.
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detected when a nitrated benzothiazole was subjected to the
standard reaction conditions. Fourth, in cases of 2-
chlorobenzothiazoles, the halogen substituents (such as F, Cl
and Br) on the aromatic ring were compatible with the
reaction conditions (see 3h-3l). Finally, 2-chlorothiazole was
also able to participate in the reaction, and target product 3m
was formed in 59% yield (determined by NMR).
Encouraged by the aforementioned ring-opening S-difluor-

omehtylation of 2-substituted benzothiazoles with TMSCF2H,
we further applied other fluorinated nucleophiles in the
reaction with 2-substituted benzothiazoles. Difluoromethyl 2-
pyridyl sulfone (2-PySO2CF2H), a reagent developed by us, is
now commercially available and widely used for fluoroalkyla-
tion and fluoroolefination reactions.12 We were surprised to
find, when 2-(methanesulfonyl)benzothiazole 1a reacted with
2-PySO2CF2

− (derived from 2-PySO2CF2H and LiHMDS) in
CH2Cl2/ HMPA at −78 °C for 2 h, no ring-opening S-(2-
pyridinesulfonyl)difluoromethylation product was formed, but
SNAr-type C-(2-pyridinesulfonyl)difluoromethylation product
5a was obtained in 72% isolated yield (see Table S3 in
Supporting Information and Scheme 2b). This result suggests
that different α-fluoro carbanions show remarkably different
reactivity (chemoselectivity) in their reactions with 2-
substituted benzothiazoles.
Next, we examined the generality of the current SNAr-type

C-(2-pyridinesulfonyl)difluoromethylation of 1 (Scheme 2b).
First, the reaction was not sensitive to leaving groups at C-2
position of benzothiazoles 1. When chloro, methanesulfonyl,
and benzenesulfonyl groups were used as the leaving groups,
the SNAr-type C-fluoroalkylation reactions proceeded
smoothly to yield the corresponding products in 48−79%
yields (5a−5k). The current C-fluoroalkylation reaction was
applied in gram-scale synthesis, and product 5a was obtained
in 82% isolated yield (1.6 g). Second, the reaction was able to
tolerate different substituents on 1, including methyl,
methoxyl, ethyoxyl, chloro, and nitro groups (5c−5i). Third,
when we replaced 2-PySO2CF2H with PhSO2CF2H, the SNAr-
type C-benzenesulfonyl difluoromethylation products 5j and
5k were also successfully formed in 72% and 48% yields,
respectively. With products 5 in hand, we performed the base-
promoted selective desulfonylation to transform 5 to
difluoromethylated compounds 6 (Scheme 2c, also see details
in Table S4 in Supporting Information). In the presence of
KOH (13 equiv) in methanol at room temperature, 5 were
readily converted into 6 within 30 min in 78−93% yields
(Scheme 2c). Given the results shown in Scheme 2, it is
intriguing that the remarkably different reactivity of CF2H

−

and 2-PySO2CF2
− have enabled two complementary synthetic

strategies for highly chemoselective S- and C-difluoromethy-
lation of 2-substituted benzothiazoles 1.
To demonstrate the synthetic utility of the current synthetic

protocol, we applied 3a as a valuable building block in
multicomponent reactions. First, 3a was used in a GaCl3-
catalyzed [4 + 1] cycloaddition with mesityl oxide, which
afforded SCF2H-substituted unsaturated lactone derivative 7 in
90% yield (Scheme 3a).13 Furthermore, 3a was also applied in
Passerini, Gröbcke−Blackburn−Bienayme,́ and Ugi reactions,
giving products 8−10 in moderate to good yields (Scheme
3b−d).
In summary, we have successfully developed two unprece-

dented and complementary synthetic strategies for divergent S-
and C-difluoromethylation of 2-substituted benzothiazoles by
taking advantage of the remarkably different reactivity of

CF2H
− and 2-PySO2CF2

− nucleophiles. A variety of structur-
ally diverse difluoromethyl 2-isocyanophenyl sulfides 3 and 2-
difluoromethylated benzothiazoles 6 were synthesized with
these two new synthetic protocols. Our study uncovers the
unique reactivity of CF2H

−, which promises to stimulate
further development of new difluoromethylation reactions.
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