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ABSTRACT: 3,3-Difluoro-1,2-diphenylcyclopropene (CpFluor), a
bench-stable fluorination reagent, has been developed in the deoxyfluori-
nation of carboxylic acids to afford various acyl fluorides. This all-carbon-
based fluorination reagent enabled the efficient transformation of
(hetero)aryl, alkyl, alkenyl, and alkynyl carboxylic acids to the
corresponding acyl fluorides under the neutral conditions. This
deoxyfluorination method was featured by the synthesis of acyl fluorides
with in-situ formed CpFluor, as well as the one-pot amidation reaction of carboxylic acids via in-situ formed acyl fluorides.

Recently, acyl fluorides have attracted much attention in
organic synthesis, owing to their unique balance of

stability and reactivity.1 They are widely used as acyl,2 aryl,3

and fluoride sources.4 Acyl fluorides are superior synthons
compared to their corresponding carboxylic acid derivatives in
terms of stability, reactivity, and transmetalation ability.1,3

Therefore, the development of a reliable and general method
to prepare acyl fluorides is highly appealing, among which the
deoxyfluorination of carboxylic acids with a fluorination
reagent has become a routine method.1b−d In this context, a
bench-stable, readily available and efficient fluorination reagent
is highly desirable.
Until now, two types of conventional fluorination reagents

have been established in the synthesis of acyl fluorides. One is
nitrogen-containing fluorination reagents (NCF reagents)
(Scheme 1a),5−8 such as cyanuric fluoride,6 TFFH,7 and
perfluoroalkylamines.8 The other is sulfur-containing fluorina-
tion reagents (S(C)F reagents) (Scheme 1b),9−12 such as
DAST,10 Deoxo-Fluor,11 and (Me4N)SCF3.

12 The introduc-
tion of a heteroatom is of great importance to stabilize and
improve the reactivity of fluorination reagents for carbonyl
compounds. However, these fluorination reagents have some
drawbacks, such as sensitivity to air and moisture, tediousness,
and costly synthetic routes, as well as the requirement of an
additional base, which limit their applications in the synthesis
of acyl fluorides.
3,3-Difluoro-1,2-diarylcyclopropenes, a class of carbon-based

fluorinating reagents (also called CpFluors), could be
synthesized by stable and inexpensive 1,2-diarylalkynes with
difluorocarbene reagents via [2 + 2] cycloaddition.13 With our
continuous efforts in organofluoine chemistry, we found that
CpFluors could not only convert a variety of alcohols to alkyl
fluorides14 but also efficiently convert a diversity of carboxylic
acids to acyl fluorides. Herein, we describe a practicable and
straightforward approach to acyl fluorides via deoxyfluorination
of carboxylic acids with CpFluor (Scheme 1c).

Encouraged by our previous work on deoxyfluorination of
alcohols with CpFluors,14 the deoxyfluorination of 3-
methylbenzoic acid (1a) via nucleophilic attack of 3,3-
difluoro-1,2-diphenylcyclopropene (CpFluor 2) was evaluated
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Scheme 1. Representative Fluorination Reagents in
Deoxyfluorination of Carboxylic Acids
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(Table 1). As expected, acyl fluoride 3a was obtained in 13%
yield at room temperature (entry 1). Conducting the reaction

at an elevated temperature (50 °C) provided the desired
product 3a in 57% yield (entry 3). Furthermore, the use of 1.6
equiv of CpFluor 2 improved the yield of 3a to 76% (entry 5).
However, the use of 2 equiv of CpFluor 2 resulted in the
formation of more anhydride, as well as a low yield of target
product 3a (entry 6), probably arising from the increased
concentration of intermediate I at the initiation stage (see
Scheme 4). Notably, no bases or additives are required in this
deoxyfluorination process, and the byproduct 2,3-diphenyl-
cycloprop-2-en-1-one (5) can be easily separated from the
target molecule.
The generality of this protocol was explored with a wide

range of carboxylic acids as shown in Scheme 2. Naphthyl
substrates provided the corresponding acyl fluorides 3b and 3c
in good yields. Nonsubstituted benzoyl fluoride 3d was
observed with moderate yield. In addition, benzoic acid
bearing electron-donating groups such as p-tert-butyl, p-
methoxyl, and acetyl substituents were well tolerated, affording
aroyl fluorides 3e−3g in 70−84% yields. The introduction of
electron-withdrawing groups such as halogens, bromomethyl,
and nitro groups onto benzoic acid in the para-position gave
the target products 3h−3k in 71%−77% yields. Benzoic acid
with electronically diverse functional groups in the ortho- and
meta-positions also successfully converted into the desired
aroyl fluorides (3l−3o), which illustrated that the present
reaction is insensitive to electronic effect and steric hindrance.
In addition, disubstituted acyl fluorides 3p and 3q were
obtained in 79% and 61% yields, respectively. Other hetero-
cycles including pyridyl (1r) and benzothiophene (1s) were
also compatible in this reaction. Particularly, alkenyl acyl
fluorides (3t and 3u) were accommodated during the reaction
regardless of the electronic nature of the aromatic ring. To
prove the utility of our method, carboxylic acid-containing
drugs were examined; probenecid coupled with CpFluor
yielded 3v in 82% yield, whereas bexarotene only afforded
3w in 38% isolated yield. The reaction could further be
extended to the aliphatic and alkynyl carboxylic acids; however,
low yields of desired products were observed due to the
instability of the formed acyl fluorides during isolation by silica
gel flash column chromatography.

One-pot deoxyfluorination/amidation of several selected
carboxylic acids were investigated using benzylamine as the
substrate. Acyl fluorides were formed by an optimized
deoxyfluorination procedure, followed by the addition of 1.5
equiv of benzylamine activated by 1 equiv of 4-dimethylami-
nopyridine (DMAP), and then direct amidation proceeded
smoothly at 50 °C for another 4 h (Table 2). Notably, benzylic
(1x and 1y), aliphatic (1z), and alkynyl (1aa) carboxylic acids
were well participated in the formation of acyl fluorides at
room temperature, affording the corresponding acyl fluorides
3x−3aa in good to excellent yields. Meanwhile, the one-pot
amidation process furnished target products 4x−4aa in
moderate to good yields. On the other hand, representative
aromatic carboxylic acid 1ab and alkenyl carboxylic acid 1ac
were also subjected to the one-pot deoxyfluorination/
amidation. Besides, carboxylic acid containing bioactive
molecules, including bindazac 1ad and sulindac 1ae, were
proved to be effective coupling partners at the elevated
temperature, providing 4ad−4ae in 78% and 75% yields,
respectively. In some cases, in situ formed 2,3-diphenylcyclo-

Table 1. Optimization of the Reaction Conditionsa

entry 2 (equiv) temp (°C) 3a (%)b

1 1.2 25 13
2 1.2 30 53
3 1.2 50 57
4 1.2 70 53
5 1.6 50 76 (70)
6 2.0 50 65

aReaction conditions: 1a (0.5 mmol), CH2Cl2 (2.5 mL), 4 h.
bDetermined by 19F NMR analysis of the crude mixture, using
benzotrifluoride as an internal standard. An isolated yield is given in
parentheses.

Scheme 2. Deoxyfluorination of Carboxylic Acidsa,b

aReaction conditions: 1 (0.5 mmol), 2 (0.8 mmol), CH2Cl2 (2.5 mL),
50 °C, 4 h. bIsolated yields. c19F NMR yields using benzotrifluoride as
an internal standard. dThe isolated yield of the reaction performed on
1 mmol scale is given in parentheses.
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prop-2-en-1-one (5) in the deoxyfluorination step could also
react with benzylamine, which decreased the amount of
benzylamine for the amidation procedure and resulted in the
low efficiency of the subsequent amidation.
To evaluate the utility of this approach, deoxyfluorination of

carboxylic acids with in situ formed CpFluor was tested in
Scheme 3. Initially, CpFluor 2 was prepared by [2 + 1]
cycloaddition reaction of diphenyl acetylene with commercially
available Me3SiCF2Br without further purification. Subse-
quently, 1 equiv of aromatic or benzylic carboxylic acid was
directly added under the identical reaction conditions.
Fortunately, 1-naphthoyl fluoride 3c and 2-(naphthalen-2-
yl)acetyl fluoride 3x were obtained without a great loss
compared to reaction with isolated CpFluor. This set of studies
revealed that the present methodology is complementary to
the deoxyfluorination of carboxylic acids without presynthesis
of a fluorination reagent.
Based on our experimental results as well as the reported

aromatic cation activation mode of gem-dihalocyclopropene in
nucleophilic halogenation of alcohols and carboxylic acids,14,15

the proposed mechanism of deoxyfluorination of carboxylic
acids to acyl fluorides was reasoned as shown in Scheme 4. In
the initiation stage, CpFluor (2) is prone to be in equilibrium
with cyclopropenium salt I in the presence of carboxylic acids.

Intermediate II resulting from the combination of a cyclo-
propenium cation and carboxylate anion of I is activated by a
proton to afford intermediate III, which further undergoes
competitive nucleophilic substitution reaction with a carbox-
ylate anion and bifluoride anion to provide anhydride 6 and
acyl fluoride 3, respectively. In the fluorination stage, the
formation of a carboxylate anion is inhibited due to the
accumulation of HF; thus, HF acts as the activator. In this
stage, the formation of intermediate III is dominated by the
direct attack of carboxylic acid 1 on the cyclopropenium cation
and the formation of acyl fluoride 3 is the main pathway.
In summary, we have disclosed the high fluorination ability

of gem-difluorocyclopropene in deoxyfluorination of carboxylic
acids to synthesize a wide range of acyl fluorides. This
deoxyfluorination method was featured by the synthesis of acyl
fluorides with in situ formed CpFluor, as well as the one-pot
amidation reaction of carboxylic acids via in situ formed acyl
fluorides.
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Table 2. One-Pot Deoxyfluorination/Amidation of
Carboxylic Acids via in Situ Formed Acyl Fluoridesa

aReaction conditions: 1 (0.5 mmol), 2 (0.8 mmol), CH2Cl2 (2.5 mL),
rt, 4 h. Then BnNH2 (1.5 equiv), DMAP (1 equiv), 50 °C, 4 h.
bDetermined by 19F NMR analysis of the crude mixture, using
benzotrifluoride as an internal standard. cIsolated yields. dDeoxy-
fluorination step was performed at 50 °C.

Scheme 3. Two-Step [2 + 1] Cycloaddition/
Deoxyfluorination for the Synthesis of Acyl Fluoridesa,b

aReaction conditions: (1) diphenylacetylene (0.88 mmol),
TMSCF2Br (1.32 mmol), nBu4NBr (0.026 mmol), toluene (2.0
mL), 110 °C, 2 h; (2) Toluene was removed under the vacuum,
added acid (0.5 mmol), CH2Cl2 (2 mL), rt or 50 °C, 4 h. bIsolated
yields. cDetermined by 19F NMR analysis of the crude mixture, using
benzotrifluoride as an internal standard.

Scheme 4. Proposed Mechanism
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More detailed results of deoxyfluorination of carboxylic
acids and characterization data of the representative
starting materials and products (PDF)
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