Copper-Mediated Di- and Monofluoromethanesulfonylation of Arenediazonium Tetrafluoroborates: Probing the Fluorine Effect

Bo Xing,^a Chuanfa Ni,^a and Jinbo Hu*^{,a}

ABSTRACT A copper-mediated di- and monofluoromethanesulfonylation of arenediazonium tetrafluoroborates using di- and monofluoromethanesulfinate reagents provides aryl difluoromethyl (or monofluoromethyl) sulfones in good yields. It was found that the relative reactivity of these sodium fluoroalkanesulfinates in the present reactions decreases in the following order: $CH_2FSO_2Na > CF_2HSO_2Na > CF_3SO_2Na$. **KEYWORDS** difluoromethanesulfonylation, fluoromethanesulfonylation, arenediazonium, sodium sulfinate, fluorine effect

Introduction

Nowadays, fluorinated organic compounds play increasingly important roles in pharmaceutical and agrochemical industries, owing to the fact that fluorine or fluorine-containing groups could effectively improve the metabolic stability, lipophilicity, and bio-logical potency of a target drug molecule.^[1,2] Among various fluorine-containing groups, the gem-difluoromethylene (CF₂) is known to be isosteric to the ethereal oxygen atom, and has attracted much attention.^[3] Difluoromethyl phenyl sulfone, PhSO₂CF₂H, as an effective nucleophilic reagent to introduce CF₂ motif, has been widely used in organic synthesis.^[4] The "chemical chameleon"^[5] character of the phenylsulfonyl group enables it a highly useful synthon to difluorinated functionalities such as difluoromethylene (–CF₂–), difluoromethyl (–CF₂H) and difluoromethylidene (=CF₂).^[6] In addition to their widespread use in organic synthesis, difluoromethyl aryl sulfones (such as PT2399) have recently been reported to show biological activity as HIF-2 α antagonist in preclinical kidney cancer models (Figure 1).^[7] Despite the wide applications of difluoromethyl aryl sulfones (ArSO₂CF₂H) in organic synthesis and life sciences, synthetic methods for their preparation have remained largely unexplored since the first synthesis by Hine and Porter in 1960.^[8] Difluoromethyl aryl sulfones are often prepared by oxidation of corresponding difluoromethyl aryl sulfides.^[4a,4d]

Figure 1 PT2399 as HIF-2α antagonist.

Recently, we were interested in two reports on the preparation of trifluoromethyl aryl sulfones from sodium trifluoromethanesulfinate (CF₃SO₂Na).^[9,10] In 2013, Shekhar and co-workers reported a copper-catalyzed coupling of aryl iodonium salts with CF₃SO₂Na (Scheme 1, eq 1).^[9] In 2015, Qing and co-workers reported a copper-promoted coupling of arenediazonium tetrafluoroborates with sodium trifluoromethanesulfinate (Scheme 1, eq 2).^[10] In these reactions, both iodonium salts and arenediazonium tetrafluoroborates are not able to oxidize CF₃SO₂Na to generate trifluoromethyl radical. Indeed, when an external oxidant (such as *t*-BuOOH) is used, CF₃SO₂Na can be oxidized to give trifluoromethyl radical and a trifluoromethylation (rather than trifluoromethanesulfonylation) reaction takes place.^[10] Previously, we reported a practical preparation of sodium fluoroalkanesulfinates (R_fSO₂Na) via NaBH₄-mediated reduction of corresponding benzo[*d*]thiazol-2-yl sulfones (Scheme 1, eq 3), and we also found that the reactivity of these sulfinates in radical *fluoroalkylations* decreases in the following order: PhCF₂SO₂Na > CF₂HSO₂Na > CH₂FSO₂Na.^[11] As our continuing effort in probing the unique fluorine effects in organic reactions,^[12] we were interested in finding out the reactivity order of R_fSO₂Na (R_f=CF₃, CF₂H, and CH₂F) in the *fluoroalkanesulfonylations*. Herein, we report our results on the synthesis of di- and monofluoromethyl aryl sulfones via copper-mediated fluoroalkanesulfonylation reactions between arenediazonium tetrafluoroborates^[13] and HCF₂SO₂Na or FCH₂SO₂Na (Scheme 1, eqs 3 and 4), and the relative reactivity of R_fSO₂Na (R_f=CF₃, CF₂H, and CH₂F) in these fluoroalkanesulfonylations.

Scheme 1 Fluoromethanesulfonylations of arenediazonium tetrafluoroborates.

Previous work:

$$R' \xrightarrow{X^{-}} Cu_2O, CF_3SO_2Na$$

$$MF, 50 °C, 14-18 h$$

$$R \xrightarrow{SO_2CF_3} (1)$$

$$R_{U}^{\Pi} \xrightarrow{N_2BF_4} \underbrace{Cu_2O, CF_3SO_2Na}_{DMSO, rt, overnight} EWG_{U}^{\Pi} \xrightarrow{SO_2CF_3} (2)$$

Results and Discussion

At the outset of our study, we conducted the experiment in DMSO using benzenediazonium tetrafluoroborate **1a** as substrate and adding CF_2HSO_2Na and Cu_2O as reagents. (Table 1, entry 1). However, no desired product **2a** was detected. Most of the sub-

^a Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

*E-mail: jinbohu@sioc.ac.cn

206

strate **1a** was transformed to the reduced product (benzene) and biphenyl (detected by GC-MS), while CF_2HSO_2Na was dominantly recovered (detected by ¹⁹F NMR). Utilizing other copper species such as CuTc and CuOAc, we were delighted to find that the addition of CuTc successfully gave 8% yield of the sulfonylation product **2a** (entry 2). Changing the solvent to MeCN, the yield was increased to 64%, while other copper species displayed low efficiency (entries 4—12). Instead of mixing the substrate **1a** with all the reagents together at the beginning, slow dropwise addition of **1a** to the acetonitrile solution of CuTc and CF₂HSO₂Na could improve the yield to 79% (entry 13). Furthermore, the amount of CuTc could be reduced to 0.5 equivalent (entry 14). Further reducing the amount of CuTc led to the loss of yield (Table 1, entries 15-17).

Table 1 Optimization of the reaction conditions

	I2BF4	"Cu"	SO ₂	SO ₂ CF ₂ H		
Ų	+ CF2HSO2N	solvent, time, r	t 🔰			
1a			2a			
Entry ^a	"Cu"	Solvent	Time	Yield		
1	Cu ₂ O	DMSO	12 h	none		
2	CuTc	DMSO	12 h	8%		
3	CuOAc	DMSO	12 h	none		
4	CuTc	MeCN	12 h	64%		
5	Cu ₂ O	MeCN	12 h	none		
6	CuOAc	MeCN	12 h	none		
7	Cu(OAc) ₂	MeCN	12 h	48%		
8	CuSO ₄	MeCN	12 h	none		
9	Cu(acac)₂	MeCN	12 h	16%		
10	CuCN	MeCN	12 h	19%		
11	CuF ₂	MeCN	12 h	none		
12	$Cu(MeCN)_4(PF_6)_2$	MeCN	12 h	35%		
13 ^b	CuTc	MeCN	12 h	79%		
14 ^{<i>b,c</i>}	CuTc	MeCN	12 h	80%		
15 ^{b,d}	CuTc	MeCN	12 h	58%		
16 ^{b,e}	CuTc	MeCN	12 h	47%		
17 ^{<i>b,f</i>}	CuTc	MeCN	12 h	34%		
18 ^b	CuTc	MeCN	0.5 h	80%		
19 ^{b,c}	CuTc	MeCN	0.5 h	80%		

^{*a*} The reaction was conducted on 0.2 mmol scale: **1a** (1.0 equiv), "Cu" (1.0 equiv), and CF₂HSO₂Na (1.5 equiv) were mixed together and 2.0 mL solvent was added. The reaction was stirred for the time indicated in the Table. The yield was determined by ¹⁹F NMR with trifluoromethylbenzene as internal standard. ^{*b*} 1.0 mL of solution of **1a** (1.0 equiv) was added via syringe to 1.0 mL of solution of CuTc (1.0 equiv) and CF₂HSO₂Na (1.5 equiv). ^{*c*}O.5 equiv of CuTc was used. ^{*d*}O.4 equiv of CuTc was used. ^{*e*}O.3 equiv of CuTc was used. ^{*f*}O.2 equiv of CuTc was used.

With the optimized conditions in hand (Table 1, entry 18), we examined the scope of this reaction, which is shown in Scheme 2. Although the reaction gave the same results for **1a** using either 0.5 or 1.0 equivalent of CuTc (Table 1, entries 18 and 19), for most substrates, reaction with 0.5 equivalent of CuTc delivered 5%—10% lower yields than those utilizing 1.0 equivalent of CuTc, therefore, the latter conditions were applied in Scheme 2 (For the results using 0.5 equivalent of CuTc, see the yields in parentheses in Scheme 2).

As shown in Table 2, our method has a good compatibility with various functional groups, giving the corresponding products 2 in moderate to good yields. The substrates bearing electron-

donating groups give better yields than the electron-deficient ones, which might attribute to the latter's higher reactivity with CuTc, thus resulting in undesired coupling reaction with thiophene carboxylate (Tc). The reaction conditions are compatible with halogens (2h-2j), ketones (2g, 2q), carboxylate esters (2k, 2t), nitrile (2s) and trimethylsilylacetylene (2u), which makes these compounds ready for further transformations to more complicated structures. To be noted, sulfones containing acidic protons, such as carboxylic acid (2v) and amide (2d), which are difficult to prepare using conventional methods, were accessible with high yields. For substrate 1u, the trimethylsilyl group was partially transformed to hydrogen, which delivered the unmasked acetylene compound directly (2u'). Finally, to show the synthetic utility of this method in organic synthesis, the α -Tocopherol derivative was synthesized using this new method in 54% yield (2x).

Scheme 2 Copper-mediated difluoromethanesulfonylation of arenediazonium tetrafluoroborates^{*a*}

^a The reaction was conducted on 0.5-mmol scale: a solution of substrate **1** (1.0 equiv) was added dropwise to the solution of CuTc (1.0 equiv) and CF₂HSO₂Na (1.5 equiv). Isolated yields are given. ^b 0.5 equiv of CuTc was used instead. ^c More solvent was used to dissolve the substrate.

This reaction could be expanded to synthesize aromatic sulfones containing other fluoroalkyls, such as mono- and trifluoromethyl groups (Schemes 3 and 4). It was found that the monofluoromethanesulfonylation of arenediazonium tetrafluoroborates gave the products **3** in moderate to good yields (Scheme 3). Electron-neutral and electron-rich substrates (**1a**—**1f**) displayed better reactivity than those bearing electron-withdrawing groups (**1g** and **1y**), which is consistent with the electronic effect. For trifluoromethanesulfonylation of arenediazonium salts, we chose **1c** as the model compound owing to its high reactivity towards sulfonylation as exhibited in Schemes 1 and 2. Although the desired trifluoromethanesulfonylation product **4** was obtained only in moderate yield (Table 2, entry 11), it is encouraging for us to develop a complementary procedure to synthesize sulfones with electron-rich groups (Scheme 4), which were not easily accessible using known methods.^[10]

Scheme 3 Copper-mediated monofluoromethanesulfonylation of a renediazonium tetrafluoroborates a

^{*a*} The reaction was conducted on 0.5 mmol scale: a solution of substrate **1** (1.0 equiv) was added dropwise to the solution of CuTc (1.0 equiv) and CH₂FSO₂Na (1.5 equiv). Isolated yields are given. ^{*b*} More amount of solvent was used to dissolve the substrate.

In 2015, we compared the reactivity of different sodium sulfinates in radical fluoroalkylation reactions.^[11] In the oxidative radical fluoroalkylations, the reactivity of sodium sulfinates decreases in the following order: $PhCF_2SO_2Na > CF_2HSO_2Na >$ CH₂FSO₂Na. Since arenediazonium tetrafluoroborates were not able to oxidize the sulfinates to the fluoroalkyl radicals,^[10] it is reasonable to presume that the sodium fluoromethanesulfinates in our reactions react as nucleophiles rather than radical precursors. As our continuing effort in probing the unique fluorine effects in organic reactions, $^{[12]}$ we were interested in probing the reactivity order of R_fSO_2Na ($R_f=CF_3$, CF_2H , and CH_2F) in the current fluoroalkanesulfonylations (Scheme 5). To rule out the influence of solubility of different sulfinates, a mixture of MeCN/H₂O was utilized as a co-solvent system (in MeCN, the solubility of these sodium sulfinates decreases as follows: $CF_3SO_2Na >$ $HCF_2SO_2Na >> FCH_2SO_2Na$). When **1c** was subjected to a mixture of CF₂HSO₂Na and CH₂FSO₂Na, 3c was formed as the major product with a ratio of 3c/2c=100/13 (Scheme 5, eq A). When 1c was exposed to a mixture of CH₂FSO₂Na and CF₃SO₂Na, the ratio of 3c to 4c was about 100/0.6 (Scheme 5, eq B). As for the reaction between 1c and CF₂HSO₂Na/CF₃SO₂Na, the ratio of compound 2c to 4c was 100/6 (Scheme 5, eq C). Based on the results of these competition experiments, it can be concluded that the relative reactivity of sodium fluoroalkanesulfinates decreases in the following order: $CH_2FSO_2Na > CF_2HSO_2Na > CF_3SO_2Na$, which can be explained by their relative nucleophilicity (more electron-rich sulfinates possess higher nucleophilicity). However, this trend is remarkably different from their reactivity in oxidative radical fluoroalkylations.^[11] In the radical process, CF₃SO₂Na usually displays high tendency to extrude SO₂ to generate CF₃ radical once oxidized. However, in our present reaction as shown in Table 2 and Scheme 4, trifluoromethylation was not observed when no external oxidant was added. Indeed, most of the CF₃SO₂Na remained unreacted under our reaction conditions. Furthermore, considering the relatively higher reactivity of CH2FSO2Na and CF_2HSO_2Na (compared to CF_3SO_2Na) in our reactions, it is reasonable to hypothesize that the sodium sulfinates R_fSO_2Na ($R_f=$ CF₃, CF₂H, and CH₂F) do not undergo oxidation to generate radicals but probably react as nucleophiles.

Based on the aforementioned information, we propose a plausible reaction mechanism as shown in Scheme 6. In the first step (Scheme 6, eq a), a copper species CuX, either X = Tc or $R_f SO_2$, serves as an initiator to generate aromatic radical through single

 Table 2
 Optimization of conditions for trifluoromethanesulfonylation of substrate 1c

Ph C	+ CF ₃ SO ₂ I `N ₂ BF ₄	Na <u>"Cu"</u> solvent, ti	me, rt	SO ₂ CF ₃
Entry ^a	"Cu"	Solvent	Time	Yield
1	Cu ₂ O	DMSO	12 h	23%
2	CuTc	DMSO	12 h	15%
3	Cu(OAc) ₂ ·H ₂ O	DMSO	12 h	19%
4	CuOTf	DMSO	12 h	21%
5	Cu ₂ O	MeCN	12 h	7%
6	CuTc	MeCN	12 h	37%
7	Cu(OAc) ₂ ·H ₂ O	MeCN	12 h	16%
8	CuOTf	MeCN	12 h	9%
9	CuTc	MeCN	0.5 h	34%
10 ^b	CuTc	MeCN	0.5 h	33%
11 ^c	CuTc	MeCN	0.5 h	40%

^a The reaction was conducted on 0.2 mmol scale: **1c** (1.0 equiv), CuTc (1.0 equiv), CF₃SO₂Na (1.5 equiv), solvent (2.0 mL). Yield was detected by ¹⁹F NMR. ^b The reaction was heated at 50 °C. ^c The reaction was conducted on 0.5 mmol scale. Isolated yield was given.

Scheme 4 Copper-mediated trifluoromethanesulfonylation of arenediazonium tetrafluoroborates^{*a*}

^{*a*} The reaction was conducted on 0.5 mmol scale: a solution of substrate **1** (1.0 equiv) was added dropwisely to the solution of CuTc (1.0 equiv) and R_iSO_2Na (1.5 equiv). Isolated yields are given. ^{*b*} Not isolatable from the by-product. Yield was detected by ¹⁹F NMR.

Scheme 5 Competition experiments of sodium fluoromethanesulfinates reacting with compound 1c

Ph N ₂ BF ₄ 1c	+	HCF ₂ SO ₂ Na (1.5 equiv) FCH ₂ SO ₂ Na (1.5 equiv)	CuTc (1.0 equiv) rt, 0.5 h MeCN/H₂O = 10:1	2c 13	+ :	3c 100	(A)
Ph N ₂ BF ₄ 1c	+	FCH ₂ SO ₂ Na (1.5 equiv) CF ₃ SO ₂ Na (1.5 equiv)	CuTc (1.0 equiv) rt, 0.5 h MeCN/H ₂ O = 10:1	3c 100	+	4c 0.6	(B)
Ph N ₂ BF ₄ 1c	+	HCF ₂ SO ₂ Na (1.5 equiv) CF ₃ SO ₂ Na (1.5 equiv)	CuTc (1.0 equiv) rt, 0.5 h MeCN/H ₂ O = 10:1	2c 100	+	4c 6	(C)

electron reansfer (SET), and the latter species reacts with fluoroalkylsulfinate to a radical anion (Scheme 6, eq b). Then the radical anion can be quenched by either another molecule of substrate (nucleophilic radical chain reaction) or the cuprous compound (redox process).

Conclusions

In summary, we have developed copper-mediated di- and monofluoromethanesulfonylation of arenediazonium salts using CF₂HSO₂Na and CH₂FSO₂Na reagents, which can be readily

 $R_{f}SO_{2}Ar' + or \qquad \longrightarrow R_{f}SO_{2}Ar + or (c)$ $Cu^{II}X \qquad Cu^{I}X$

prepared from the corresponding benzo[*d*]thiazol-2-yl sulfones.^[11] Various structurally diverse di- and monofluoromethyl aryl sulfones can be readily synthesized in good yields. This method also offers an alternative protocol for the synthesis of electron-rich trifluoromethyl sulfones. Furthermore, it was found that the relative reactivity of these fluoroalkanesulfinates in the current fluoroalkanesulfonylations decreases in the following order: $CH_2FSO_2Na > CF_2HSO_2Na > CF_3SO_2Na$. This reactivity order is consistent with their innate nucleophilicity, but different from their relative reactivity in oxidative radical fluoroalkylations.^[11]

Experimental

General Information. Unless otherwise mentioned, reagents were purchased from commercial sources and used as received. CF₂HSO₂Na and CH₂FSO₂Na were prepared as per the reported literature,^[11] while CF_3SO_2Na was purchased from TCI. The aromatic diazonium tetrafluoroborates were synthesized according to reported procedure.^[13c] All the reactions were carried out under N₂ atmosphere. MeCN and DMSO were distilled over CaH₂ and kept over activated 4 Å MS. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 or 500 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of the residual solvent peak: CHCl₃ in CDCl₃: δ 7.26, DMSO in d_6 -DMSO: δ 2.54. ¹³C NMR chemical shifts were determined relative to internal TMS at δ 0.0. $^{19}\mathrm{F}$ NMR chemical shifts were determined relative to ${\rm CFCl}_3$ at δ 0.0. Data for ¹H, ¹³C and ¹⁹F NMR were recorded as follows: chemical shift (δ), multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m =multiplet). Coupling constants are reported in hertz (Hz). Highresolution mass data were recorded on a HR-MS in the EI mode or FSI mode

General procedure for the preparation of diazonium salts 1. Method A. In a 50 mL round-bottom flask, the aniline (10.0 mmol) was dissolved in a mixture of absolute ethanol (3.0 mL) and an aqueous solution of HBF₄ (48%, 2.5 mL), followed by dropwise addition of ^tBuONO (2.7 mL) at 0 °C. After stirring at room temperature for 1 h, diethyl ether (20 mL) was added to precipitate the arenediazonium tetrafluoroborate. After filtration and washing with diethyl ether (3×10 mL), the product was dried in vacuo (10⁻³ mbar) for 10 min and stored in refrigerator under N₂ atmosphere.

Method B. In a 50 mL round-bottom flask, aniline (5.0 mmol) was dissolved in a mixture of H_2O (1.0 mL) and an aqueous solution of HBF₄ (48%, 1.9 mL), followed by dropwise addition of an aqueous solution of NaNO₂ (680 mg in 1.0 mL H₂O). After being stirred at 0 °C for 30 min, the reaction mixture was worked up by filtration, washing successively with a small amount of ice water, alcohol and diethyl ether, and the arenediazonium tetrafluoroborate was dried in vacuo (10⁻³ mbar) for 10 min and stored in refrigerator under N₂ atmosphere.

General procedure for the preparation of compound 2. To an oven-dried Schlenk tube equipped with a stirring bar and rubber septum stopper was added CuTc (95.0 mg, 0.5 mmol), CF₂HSO₂Na

(103.5 mg, 0.75 mmol) and MeCN (2.5 mL). After stirring for 5 min, a solution of arenediazonium tetrafluoroborates **1** (0.5 mmol) in MeCN (2.5 mL) was added dropwise in 15 min. Then the mixture was sealed and stirred for 30 min, followed by filtration on celite and washing with ethyl acetate. The filtrate was treated with saturated aqueous NaHCO₃, and the mixture was extracted by ethyl acetate (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and removal of the solvent under vacuum, the crude product was purified by column chromatography. *To be noted: (a) Aqueous NH*₄Cl was used instead of NaHCO₃ for compounds **2u** and **2v**; (b) 5.0 mL of MeCN was used to dissolve substrates **1e**, **1r**, **1s** and **1v**.

((Difluoromethyl)sulfonyl)benzene (2a). Yellow liquid (72.5 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (dd, J=8.1, 0.8 Hz, 2H), 7.86–7.78 (m, 1H), 7.67 (t, J=7.8 Hz, 2H), 6.20 (t, J=53.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 136.1, 132.0, 130.9, 129.9, 114.9 (t, J=285.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.59 (d, J=53.4 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₇H₆F₂O₂S: 192.0057; found: 192.0061.

1-((Difluoromethyl)sulfonyl)-4-methylbenzene (2b). Yellow solid (84.6 mg, 82%), mp: 68–70 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, *J*=8.3 Hz, 2H), 7.45 (d, *J*=8.0 Hz, 2H), 6.17 (t, *J*=53.5 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 147.7, 130.9, 130.6, 128.9, 114.9 (t, *J*=285.6 Hz), 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.75 (d, *J*=53.5 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₈H₈F₂O₂S: 206.0213; found: 206.0220.

4-((Difluoromethyl)sulfonyl)-1,1'-biphenyl (2c). Yellow solid (117.8 mg, 88%), mp: 71–73 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.06 (d, J=8.5 Hz, 2H), 7.89–7.83 (m, 2H), 7.67–7.63 (m, 2H), 7.56–7.45 (m, 3H), 6.23 (t, J=53.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 148.9, 138.7, 131.2, 130.1, 129.3, 129.2, 128.2, 127.6, 114.8 (t, J=285.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.50 (d, J=53.5 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₁₃H₁₀F₂O₂S: 268.0370; found: 268.0368.

N-(4-((Difluoromethyl)sulfonyl)phenyl)acetamide (2d). Yellow solid (108.6 mg, 87%), mp: 136–137 °C. ¹H NMR (400 MHz, d_6 -DMSO) δ: 10.59 (s, 1H), 7.98–7.86 (m, 4H), 7.23 (t, J=52.3 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO) δ: 170.0, 146.7, 132.2, 124.6, 119.5, 115.1 (t, J=281.9 Hz), 24.7. ¹⁹F NMR (376 MHz, d_6 -DMSO) δ: -124.39 (d, J=52.3 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₉H₉NF₂O₃S: 249.0271; found: 249.0277.

5-((Difluoromethyl)sulfonyl)-1,2,3-trimethoxybenzene (2e). White solid (102.7 mg, 73%), mp: 77–79 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.18 (s, 2H), 6.20 (t, *J*=53.5 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 153.7, 144.5, 125.7, 114.7 (t, *J*=285.9 Hz), 107.8, 61.2, 56.6. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.53 (d, *J* = 53.6 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₀H₁₂F₂O₅S: 282.0374; found: 282.0378.

2-((Difluoromethyl)sulfonyl)naphthalene (2f). Red solid (82.1 mg, 68%), mp: 54–55 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.61 (s, 1H), 8.07 (t, *J*=7.1 Hz, 2H), 7.99 (d, *J*=8.3 Hz, 1H), 7.93 (dd, *J*=8.7, 1.7 Hz, 1H), 7.76 (ddd, *J*=8.2, 7.0, 1.3 Hz, 1H), 7.70 (ddd, *J*=8.1, 7.0, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 136.4, 133.7, 132.2, 130.5, 129.9, 129.8, 128.7, 128.2 (d, *J*=2.8 Hz), 124.1, 114.9 (t, *J*=285.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.39 (d, *J*=53.4 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₁H₈F₂O₂S: 242.0213; found: 242.0216.

(3-((Difluoromethyl)sulfonyl)phenyl)(phenyl)methanone (2g). Yellow solid (96.6 mg, 65%), mp: 72–73 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.38 (s, 1H), 8.24 (ddd, *J*=13.5, 7.3, 4.6 Hz, 2H), 7.88–7.78 (m, 3H), 7.72–7.63 (m, 1H), 7.54 (dd, *J*=10.7, 4.7 Hz, 2H), 6.26 (t, *J*=53.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 194.1, 139.2, 136.8, 136.2, 133.8, 133.5, 132.3, 131.9, 130.1, 130.0, 128.8, 114.7 (t, *J*=286.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.07 (d, *J*=53.3 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₄H₁₀F₂O₃S: 296.0319; found: 296.0316.

1-((Difluoromethyl)sulfonyl)-4-iodobenzene (2h). Yellow sol-

id (108.6 mg, 68%), mp: 92–93 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.04 (d, J=8.6 Hz, 2H), 7.68 (d, J=8.5 Hz, 2H), 6.19 (t, J=53.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 139.1, 131.7, 131.3, 114.6 (t, J=286.1 Hz), 104.9. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.27 (d, J= 53.4 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₇H₅F₂O₂SI: 317.9023; found: 317.9033.

1-Bromo-4-((difluoromethyl)sulfonyl)benzene (2i). Yellow solid (83.5 mg, 62%), mp: 67–69 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (q, *J*=8.8 Hz, 4H), 6.20 (t, *J*=53.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 133.1, 132.1, 132.0, 130.7, 114.6 (t, *J*=286.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.22 (d, *J*=53.4 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₇H₅F₂O₂SBr: 269.9162; found: 269.9157.

1-Chloro-4-((difluoromethyl)sulfonyl)benzene (2j). Yellow solid (84.6 mg, 75%), mp: 66–67 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.97–7.91 (m, 2H), 7.70–7.60 (m, 2H), 6.20 (t, J=53.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ: 143.2, 132.1, 130.1, 114.7 (t, J= 285.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ: -121.25 (d, J=53.4 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₇H₅F₂O₂SCI: 225.9667; found: 225.9668.

Ethyl 4-((difluoromethyl)sulfonyl)benzoate (2k). Yellow liquid (91.4 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ : 8.32 (d, *J*=8.7 Hz, 2H), 8.09 (d, *J*=8.5 Hz, 2H), 6.24 (t, *J*=53.3 Hz, 1H), 4.47 (q, *J*=7.1 Hz, 2H), 1.45 (t, *J*=7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.9, 137.4, 135.7, 131.0, 130.8, 114.9 (t, *J*=286.4 Hz), 62.3, 14.5. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.20 (d, *J*=53.2 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₀H₁₀F₂O₄S: 264.0268; found: 264.0264.

1-((Difluoromethyl)sulfonyl)-4-nitrobenzene (2I). Yellow solid (54.2 mg, 46%), mp: 119–120 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.55–8.46 (m, 2H), 8.22 (d, *J*=8.8 Hz, 2H), 6.29 (t, *J*=53.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 152.2, 137.4, 132.3, 124.7, 114.7 (t, *J*=286.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -120.60 (d, *J*=53.0 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₇H₅NF₂O₄S: 236.9907; found: 236.9912.

4-((Difluoromethyl)sulfonyl)-1,2-dimethoxybenzene (2m). Yellow solid (101.9 mg, 81%), mp: 100–101 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.62 (dd, *J*=8.5, 2.1 Hz, 1H), 7.37 (d, *J*=2.0 Hz, 1H), 7.06 (d, *J*=8.5 Hz, 1H), 6.18 (t, *J*=53.7 Hz, 1H), 3.99 (s, 3H), 3.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.4, 149.6, 125.5, 122.7, 114.7 (t, *J*=285.2 Hz), 112.1, 111.1. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.69 (d, *J*=53.7 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₉H₁₀F₂O₄S: 252.0268; found: 252.0267.

1-((Difluoromethyl)sulfonyl)-4-methoxybenzene (2n). Yellow liquid (89.1 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ : 7.95–7.89 (m, 2H), 7.15–7.07 (m, 2H), 6.17 (t, *J*=53.7 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.7, 133.1, 122.7, 115.0, 114.7 (t, *J*=285.0 Hz), 55.9. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.75 (d, *J*=53.6 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₉H₈F₂O₃S: 222.0162; found: 222.0167.

6-((Difluoromethyl)sulfonyl)-2,3-dihydrobenzo[*b***][1,4]dioxine (20**). Yellow solid (94.5 mg, 76%), mp: 100–101 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.48 (dt, *J*=8.4, 2.1 Hz, 2H), 7.07 (d, *J*=8.4 Hz, 1H), 6.15 (t, *J*=53.6 Hz, 1H), 4.41–4.36 (m, 2H), 4.36–4.31 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 150.4, 144.1, 124.6, 123.5, 120.2, 118.5, 114.6 (t, *J*=285.3 Hz), 64.8, 64.1. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.68 (d, *J*=53.6 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₉H₈F₂O₄S: 250.0111; found: 250.0110.

1-((Difluoromethyl)sulfonyl)-4-phenoxybenzene (2p). Yellow solid (107.5 mg, 76%), mp: 65–66 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.92 (d, *J*=8.9 Hz, 2H), 7.46 (t, *J*=7.9 Hz, 2H), 7.34–7.25 (m, 1H), 7.20–7.09 (m, 4H), 6.18 (t, *J*=53.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.7, 154.3, 133.2, 130. 5, 125.7, 124.3, 120.8, 117.7, 114.7 (t, *J*=285.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.57 (d, *J*=53.6 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₃H₁₀F₂O₃S: 284.0319; found: 284.0310.

1-(4-((Difluoromethyl)sulfonyl)phenyl)ethan-1-one (2q). Yellow solid (83.8 mg, 72%), mp: 93-94 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.20 (d, J=8.6 Hz, 2H), 8.12 (d, J=8.5 Hz, 2H), 6.23 (t, J=53.2

Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 196.5, 142.5, 135.5, 131.2, 129.2, 114.8 (t, *J*=286.5 Hz), 27.1. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.11 (d, *J*=53.3 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₉H₈F₂O₃S: 234.0162; found: 234.0159.

1-((Difluoromethyl)sulfonyl)-4-(methylsulfonyl)benzene (2r). White solid (73.2 mg, 54%), mp: 152–154 °C. ¹H NMR (400 MHz, d_6 -DMSO) δ : 8.34 (d, J=8.5 Hz, 2H), 8.28 (d, J=8.5 Hz, 2H), 7.45 (t, J=51.8 Hz, 1H), 3.39 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO) δ : 147.8, 136.5, 131.9, 129.2, 115.2 (t, J=283.2 Hz), 43.4. ¹⁹F NMR (376 MHz, d_6 -DMSO) δ : -124.04 (d, J=51.8 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₈H₈F₂O₄S₂: 269.9832; found: 269.9835.

3-((Difluoromethyl)sulfonyl)benzonitrile (2s). Yellow solid (63.5 mg, 59%), mp: 85–86 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.29 (s, 1H), 8.23 (d, J=8.0 Hz, 1H), 8.09 (d, J=7.8 Hz, 1H), 7.84 (t, J=7.9 Hz, 1H), 6.28 (t, J=53.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 138.8, 134.5, 134.2, 133.7, 130.8, 116.4, 114.7, 114.7 (t, J=286.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -120.67 (d, J=53.1 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₈H₅NF₂O₂S: 217.0009; found: 217.0004.

Dimethyl 5-((difluoromethyl)sulfonyl)isophthalate (2t). White solid (67.3 mg, 44%), mp: 108–109 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (s, 1H), 8.80 (s, 2H), 6.29 (t, J=53.2 Hz, 1H), 4.03 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.1, 137.3, 135.3, 133.5, 132.7, 114.7 (t, J=286.6 Hz), 53.2. ¹⁹F NMR (376 MHz, CDCl₃) δ : -120.73 (d, J=53.2 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₁₁H₁₀F₂O₆S: 308.0166; found: 308.0160.

((4-((Difluoromethyl)sulfonyl)phenyl)ethynyl)trimethylsilane (2u). Yellow solid (64.3 mg, 45%), mp: 56–57 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.92 (d, J=8.4 Hz, 2H), 7.69 (d, J=8.5 Hz, 2H), 6.19 (t, J=53.4 Hz, 1H), 0.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 133.1, 131.6, 131.15, 130.8, 115.0 (t, J=285.9 Hz), 102.8, 101.5, 0.0. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.45 (d, J=53.5 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₁₂H₁₄SiF₂O₂S: 288.0452; found: 288.0455.

1-((Difluoromethyl)sulfonyl)-4-ethynylbenzene (2u'). Yellow solid (24.5 mg, 23%), mp: 76–78 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, *J*=8.4 Hz, 2H), 7.74 (d, *J*=8.5 Hz, 2H), 6.21 (t, *J*=53.4 Hz, 1H), 3.39 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 133.1, 131.5, 130.6, 130.2, 114.7 (t, *J*=286.0 Hz), 82.7, 81.5. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.32 (d, *J*=53.4 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₉H₆F₂O₂S: 216.0057; found: 216.0050.

3-((Difluoromethyl)sulfonyl)benzoic acid (2v). White solid (68.5 mg, 58%), mp: 167–168 °C. ¹H NMR (400 MHz, d_6 -DMSO) δ : 8.45 (d, J=7.8 Hz, 1H), 8.42 (s, 1H), 8.24 (d, J=7.9 Hz, 1H), 7.94 (t, J=7.8 Hz, 1H), 7.41 (t, J=52.0 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ : 165.9, 137.1, 134.5, 133.3, 132.7, 131.5, 130.9, 115.1 (t, J=282.6 Hz). ¹⁹F NMR (376 MHz, d_6 -DMSO) δ : -124.42 (d, J= 52.0 Hz). HR-MS (ESI): m/z calcd for [M-H]⁻ C₈H₅F₂O₄S: 234.9882; found: 234.9880.

6-((Difluoromethyl)sulfonyl)benzo[*d***]thiazole (2w).** Yellow solid (80.2 mg, 64%), mp: 106–107 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.34 (s, 1H), 8.69 (d, *J*=1.7 Hz, 1H), 8.38 (d, *J*=8.6 Hz, 1H), 8.11 (dd, *J*=8.7, 1.8 Hz, 1H), 6.27 (t, *J*=53.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.8, 157.6, 134.8, 128.6, 127.6, 126.2, 124.9, 114.7 (t, *J*=286.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.04 (d, *J*=53.3 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₈H₅NF₂O₂S₂: 248.9730; found: 248.9725.

(*R*)-2,5,7,8-Tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl ((difluoromethyl)sulfonyl)benzoate (2x). White solid (191.5 mg, 59%), mp: 77–79 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.51 (d, *J*=8.4 Hz, 2H), 8.17 (d, *J*=8.3 Hz, 2H), 6.27 (t, *J*=53.2 Hz, 1H), 2.65 (t, *J*=6.5 Hz, 2H), 2.15 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.86 (td, *J*=13.9, 7.0 Hz, 2H), 1.64–1.04 (m, 24H), 0.88 (t, *J*=6.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ : 163.3, 149.9, 140.4, 136.3, 136.1, 131.1, 131.0, 126.5, 124.8, 123.4, 117.7, 114.8 (t, *J*=286.4 Hz), 75.3, 39.4, 37.5 (ddd, *J*=12.4, 9.8, 4.9 Hz), 32.8 (dd, *J*=8.4, 1.9 Hz), 28.0, 24.8 (d, *J*=1.4 Hz), 24.5, 22.7, 22.6, 21.1, 20.7, 19.8, 19.7 (dd, *J*=5.9, 2.7 Hz), 13.1, 12.3, 11.9. ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.06 (d, *J*=53.2 Hz). HR-MS (ESI): *m/z* calcd for $[M+H]^{+}C_{37}H_{55}F_{2}O_{5}S: 649.3733; found: 649.3727.$

General procedure for the preparation of compound 3. To an oven-dried Schlenk tube equipped with a stirring bar and rubber septum stopper was added CuTc (95.0 mg, 0.5 mmol), CH₂FSO₂Na (90.0 mg, 0.75 mmol) and MeCN (2.5 mL). After stirring for 5 min, a solution of arenediazonium tetrafluoroborates **1** (0.5 mmol) in MeCN (2.5 mL) was added dropwise in 15 min. Then the mixture was sealed and stirred for 30 min, followed by filtration on celite and washing with ethyl acetate. The filtrate was treated with saturated aqueous NaHCO₃, and the mixture was extracted by ethyl acetate (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and removal of the solvent under vacuum, the crude product was purified by column chromatography. *To be noted: 5.0 mL of MeCN was used to dissolve substrate 1e.*

((Fluoromethyl)sulfonyl)benzene (3a). Colorless liquid (50.0 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ : 7.99 (d, J=7.4 Hz, 2H), 7.78–7.72 (m, 1H), 7.63 (t, J=7.7 Hz, 2H), 5.15 (d, J=47.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 136.0, 134.9, 129.5, 129.0, 92.0 (d, J=220.2 Hz). ¹⁹F NMR (376 MHz, CDCl3) δ : -210.67 (t, J=47.2 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₇H₇FO₂S: 174.0151; found: 174.0147.

1-((Fluoromethyl)sulfonyl)-4-methylbenzene (3b). White solid (62.6 mg, 67%), mp: 100–101 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.85 (d, *J*=8.3 Hz, 1H), 7.41 (d, *J*=8.0 Hz, 1H), 5.12 (d, *J*=47.2 Hz, 1H), 2.48 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 146.2, 133.0, 130.2, 129.1, 92.1 (d, *J*=219.8 Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ : –210.64 (t, *J*=47.3 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₈H₉FO₂S: 188.0307; found: 188.0304.

4-((Fluoromethyl)sulfonyl)-1,1'-biphenyl (3c). White solid (91.5 mg, 73%), mp: 102–103 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.04 (d, *J*=8.3 Hz, 2H), 7.82 (d, *J*=8.6 Hz, 2H), 7.65–7.62 (m, 2H), 7.58–7.40 (m, 3H), 5.18 (d, *J*=47.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 147.9, 138.9, 134.3, 129.6, 129.2, 128.9, 128.2, 127.5, 92.1 (d, *J*=220.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : –210.48 (t, *J*=47.1 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₃H₁₁FO₂S: 250.0464; found: 250.0472.

N-(4-((Fluoromethyl)sulfonyl)phenyl)acetamide (3d). Yellow solid (80.4 mg, 70%), mp: 170–171 °C. ¹H NMR (400 MHz, d_6 -DMSO) δ: 10.48 (s, 1H), 7.87 (s, 4H), 5.63 (d, J=46.0 Hz, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO) δ: 169.8, 145.4, 130.5, 129.5, 119.3, 92.4 (d, J=211.1 Hz), 24.7. ¹⁹F NMR (376 MHz, d_6 -DMSO) δ: -213.09 (d, J=45.9 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₉H₁₀NFO₃S: 231.0365; found: 231.0369.

5-((Fluoromethyl)sulfonyl)-1,2,3-trimethoxybenzene (3e). Yellow solid (75.6 mg, 57%), mp: 93–94 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.16 (s, 2H), 5.13 (d, J=47.1 Hz, 2H), 3.94 (s, 3H), 3.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ: 153.7, 143.5, 130.2, 106.2, 92.1 (d, J=220.3 Hz), 61.1, 56.6. ¹⁹F NMR (376 MHz, CDCl₃) δ: -209.81 (t, J=47.1 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₁₀H₁₃FO₅S: 264.0468; found: 264.0469.

2-((Fluoromethyl)sulfonyl)naphthalene (3f). Red solid (63.2 mg, 56%), mp: 80–81 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.58 (s, 1H), 8.05 (t, *J*=7.9 Hz, 2H), 7.97 (d, *J*=8.1 Hz, 1H), 7.92 (dd, *J*=8.7, 1.7 Hz, 1H), 7.70 (dtd, *J*=16.2, 7.0, 1.2 Hz, 2H), 5.22 (d, *J*=47.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 135. 9, 132.8, 132.2, 131.6, 129.9 (d, *J*=1.1 Hz), 129.6, 128.1, 128.0, 123.0, 92.1 (d, *J*=220.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -210.36 (t, *J*=47.2 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₁H₉FO₂S: 224.0307; found: 224.0306.

(3-((Fluoromethyl)sulfonyl)phenyl)(phenyl)methanone (3g). Yellow solid (68.5 mg, 45%), mp: 90–91 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.37 (s, 1H), 8.19 (t, *J*=9.0 Hz, 2H), 7.79 (dd, *J*=13.4, 7.5 Hz, 3H), 7.67 (t, *J*=7.4 Hz, 1H), 7.54 (t, *J*=7.8 Hz, 2H), 5.19 (d, *J*=47.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 194.4, 139.1, 136.5, 136.3, 135.9, 133.4, 132.4, 130.3, 130.1, 129.9, 128.8, 92.0 (d, *J*=220.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -210.57 (t, *J*=47.0 Hz). HR-MS (EI): *m/z* calcd for [M]⁺ C₁₄H₁₁FO₃S: 278.0413; found:

278.0420.

Ethyl 3-((fluoromethyl)sulfonyl)benzoate (3y). Yellow liquid (62.4 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ : 8.62 (s, 1H), 8.42 (d, J=7.8 Hz, 1H), 8.16 (d, J=7.9 Hz, 1H), 7.73 (t, J=7.8 Hz, 1H), 5.19 (d, J=47.1 Hz, 2H), 4.45 (q, J=7.1 Hz, 2H), 1.44 (t, J=7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.6, 136.6, 135.7, 133.0, 132.3, 130.1, 129.9, 91.9 (d, J=220.7 Hz), 62.0, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ : -210.68 (t, J=47.1 Hz). HR-MS (EI): m/z calcd for [M]⁺ C₁₀H₁₁FO₄S: 246.0362; found: 246.0357.

General procedure for the preparation of compound 4. To an oven-dried Schlenk tube equipped with a stirring bar and rubber septum stopper was added CuTc (95.0 mg, 0.5 mmol), CF₃SO₂Na (117.0 mg, 0.75 mmol) and MeCN (2.5 mL). After stirring for 5 min, a solution of arenediazonium tetrafluoroborates **1** (0.5 mmol) in MeCN (2.5 mL) was added dropwise in 15 min. Then the mixture was sealed and stirred for 30 min, followed by filtration on celite and washing with ethyl acetate. The filtrate was treated with saturated aqueous NaHCO₃, and the mixture was extracted by ethyl acetate (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and removal of the solvent under vacuum, the crude product was purified by column chromatography.

4-((Trifluoromethyl)sulfonyl)-1,1'-biphenyl (4c). Yellow solid (58.4 mg, 41%), mp: 72–73 °C. ¹H NMR (400 MHz, CDCl₃) δ: 8.11 (d, J=8.2 Hz, 2H), 7.88 (d, J=8.3 Hz, 2H), 7.65 (d, J=7.2 Hz, 2H), 7.57–7.46 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ: 149.7, 138.5, 131.4, 129.6, 129.4, 129.3, 128.5, 127.6, 119.9 (q, J=325.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ: -78.44 (s). HR-MS (EI): m/z calcd for [M]⁺ C₁₃H₉F₃O₂S: 286.0275; found: 286.0272.

1-Methoxy-4-((trifluoromethyl)sulfonyl)benzene (4n). Yellow liquid (48.1 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ: 7.96 (d, *J*=8.9 Hz, 2H), 7.11 (d, *J*=9.0 Hz, 21H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ: 166.2, 133.3, 122.0, 119.9 (q, *J*=325.5 Hz), 115.3, 56.0. ¹⁹F NMR (376 MHz, CDCl₃) δ: -78.88 (s). HR-MS (EI): *m/z* calcd for [M]⁺ C₈H₇F₃O₃S: 240.0068; found: 240.0069.

General procedure for the competition experiments. Experiment A. To an oven-dried Schlenk tube equipped with a stirring bar and rubber septum stopper was added CuTc (95.0 mg, 0.5 mmol), CF_2HSO_2Na (103.5 mg, 0.75 mmol), CH_2FSO_2Na (90.0 mg, 0.75 mmol) and MeCN (2.5 mL). After stirring for 5 min, a solution of 4-biphenyldiazonium tetrafluoroborate **1c** (134.0 mg, 0.5 mmol) in MeCN (2.5 mL) was added dropwise in 15 min. Then the mixture was sealed and stirred for 30 min, followed by filtration on celite and washing with ethyl acetate. The filtrate was treated with saturated aqueous NaHCO₃, and the mixture was extracted by ethyl acetate (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and concentration of the solvent under vacuum, the ratio was detected by ¹⁹F NMR spectroscopy.

Experiment B. To an oven-dried Schlenk tube equipped with a stirring bar and rubber septum stopper was added CuTc (95.0 mg, 0.5 mmol), FCH₂SO₂Na (90.0 mg, 0.75 mmol), CF₃SO₂Na (117.0 mg, 0.75 mmol) and MeCN (2.5 mL). After stirring for 5 min, a solution of 4-biphenyldiazonium tetrafluoroborate **1c** (134.0 mg, 0.5 mmol) in MeCN (2.5 mL) was added dropwise in 15 min. Then the mixture was sealed and stirred for 30 min, followed by filtration on celite and washing with ethyl acetate. The filtrate was treated with saturated aqueous NaHCO₃, and the mixture was extracted by ethyl acetate (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and concentration of the solvent under vacuum, the ratio was detected by ¹⁹F NMR spectroscopy.

Experiment C. To an oven-dried Schlenk tube equipped with a stirring bar and rubber septum stopper was added CuTc (95.0 mg, 0.5 mmol), HCF₂SO₂Na (103.5 mg, 0.75 mmol), CF₃SO₂Na (117.0 mg, 0.75 mmol) and MeCN (2.5 mL). After stirring for 5 min, a solution of 4-biphenyldiazonium tetrafluoroborate **1c** (134.0 mg,

0.5 mmol) in MeCN (2.5 mL) was added dropwise in 15 min. Then the mixture was sealed and stirred for 30 min, followed by filtration on celite and washing with ethyl acetate. The filtrate was treated with saturated aqueous NaHCO₃, and the mixture was extracted by ethyl acetate (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and concentration of the solvent under vacuum, the ratio was detected by ¹⁹F NMR spectroscopy.

Supporting Information

The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.201700748.

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2015CB931900, 2016YFB0101200), the National Natural Science Foundation of China (21632009, 21421002, 21472221, 21372246, 21302206), the Key Programs of the Chinese Academy of Sciences (KGZD-EW-T08), the Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH049), Shanghai Science and Technology program (15XD1504400), and Youth Innovation Promotion Association CAS (2014231).

References

- (a) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, NJ, 2008;
 (b) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxiford, U.K., 2006;
 (c) Nagib, D. A.; Macmillan, D. W. C. Nature 2011, 480, 224;
 (d) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470;
 (e) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95;
 (f) Liu, Q.; Ni, C.; Hu, J. Natl. Sci. Rev. 2017, 4, 303.
- [2] For reviews, see: (a) Schlosser, M. Angew. Chem. Int. Ed. 2006, 45, 5432; (b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308; (c) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804; (d) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475; (e) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Aisan J. 2012, 7, 1744; (f) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815.
- [3] (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2013; (b) Blackburn, G. M., Kent, D. E.; Kolkmann, F. J. J. Chem. Soc., Perkin Trans. 2001, 112, 13; (d) O'Hagan, D.; Wang, Y.; Skibinski, M.; Slawin, A. M. Z. Pure Appl. Chem. 2012, 84, 1587.
- [4] (a) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765; (b) Li, X.; Zhao, J.;

Hu, M.; Chen, D.; Ni, C.; Wang, L.; Hu, J. *Chem. Commun.* **2016**, *52*, 3657; (c) Xiao, P.; Rong, J.; Ni, C.; Guo, J.; Li, X.; Chen, D.; Hu, J. *Org. Lett.* **2016**, *18*, 5912; (d) Hu, J. *J. Fluorine Chem.* **2009**, *130*, 1130.

- [5] Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61, 107.
- [6] (a) Prakash, G. K. S.; Hu, J.; Olah, G. A. J. Org. Chem. 2003, 68, 4457;
 (b) Prakash, G. K. S.; Hu, J.; Mathew, T.; Olah, G. A. Angew. Chem. Int. Ed. 2003, 42, 5216; (c) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Org. Lett. 2004, 6, 4315; (d) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Angew. Chem. Int. Ed. 2004, 43, 5203; (e) Ni, C.; Hu, J. Tetrahedron Lett. 2005, 46, 8273; (f) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Eur. J. Org. Chem. 2005, 2218; (g) Zhu, J.; Wang, F.; Huang, W.; Zhao, Y.; Ye, W.; Hu, J. Synlett 2011, 899.
- [7] (a) Cho, H.; Du, X.; Rizzi, J. P.; Liberzon, E.; Chakraborty, A. A.; Gao, W.; Carvo, I.; Signoretti, S.; Bruick, R. K.; Josey, J. A.; Wallace, E. M.; Kaelin Jr, W. G. *Nature* **2016**, *539*, 107; (b) Chen, W.; Hill, H.; Christie, A.; Kim, S. M.; Holloman, E.; Pavia-Jimenez, A.; Hoyamoun, F.; Ma, Y.; Patel, N.; Yell, P.; Hao, G.; Yousuf, Q.; Joyce, A.; Pedrosa, I.; Geiger, H.; Zhang, H.; Chang, J.; Gardner, K. H.; Bruick, R. K.; Reeves, C.; Hwang, T. H.; Courtney, K.; Frenkel, E.; Sun, X.; Zojwalla, N.; Wong, T.; Rizzi, J. P.; Wallace, E. M.; Josey, J. A.; Xie, Y.; Xie, X.-J.; Kapur, P.; McKay, R. M.; Brugarolas, J. *Nature* **2016**, *539*, 112.
- [8] (a) Hine, J.; Porter, J. J. J. Am. Chem. Soc. **1960**, 82, 6718; (b) Zheng, Q.-T.; Wei, Y.; Zheng, J.; Duan, Y.-Y.; Zhao, G.; Wang, Z.-B.; Lin, J.-H.; Zheng, X.; Xiao, J.-C. RSC Adv. **2016**, *6*, 82298.
- [9] Cullen, S. C.; Shekhar, S.; Nere, N. K. J. Org. Chem. 2013, 78, 12194.
- [10] Zhang, K.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2015, 80, 7658.
- [11] He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
- [12] (a) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441; (b) Zhang, W.; Ni, C.;
 Hu, J. Top. Curr. Chem. 2012, 308, 25; (c) Ni, C.; Hu, J. Synlett 2011, 770.
- [13] For selected recent examples of using arenediazonium tetrafluoroborates in synthetic fluorine chemistry, see: (a) Danoun, G.; Bayarmagnai, B.; Grünberg, M. F.; Goossen, L. J. Angew. Chem. Int. Ed. 2013, 52, 7972; (b) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Angew. Chem. Int. Ed. 2015, 54, 5753; (c) Matheis, C.; Jouvin, K.; Goossen, L. J. Org. Lett. 2014, 16, 5984; (d) Wang, X.; Xu, Y.; Mo, F.; Ji, G.; Qiu, D.; Feng, J.; Ye, Y.; Zhang, S.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2013, 135, 10330; (e) Dai, J. J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z. J.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436; (f) Wu, J.; Gu, Y.; Leng, X.; Shen, Q. Angew. Chem. Int. Ed. 2015, 54, 7648.

Manuscript received: December 5, 2017 Manuscript revised: January 3, 2018 Manuscript accepted: January 7, 2018 Accepted manuscript online: January 12, 2018 Version of record online: XXXX, 2018