Reaction of Baylis–Hillman Adducts with Fluorinated Silanes

Artem A. Zemtsov,^[a] Vitalij V. Levin,^[a] Alexander D. Dilman,^{*[a]} Marina I. Struchkova,^[a] Pavel A. Belyakov,^[a] Vladimir A. Tartakovsky,^[a] and Jinbo Hu^[b]

Keywords: Fluorine / Silanes / Michael addition / Baylis-Hillman adducts / Chemoselectivity

Reactions of acylated Baylis–Hillman adducts bearing nitrile, ester, or ketone groups with C_6F_5 -substituted silicon reagents $Me_nSi(C_6F_5)_{4-n}$ (n = 1-3) have been studied. The reactions are initiated by Bu_4NOAc (5 mol-%) in MeCN or DMF under mild conditions and afford products of allylic substitution of the acetoxy group by the C_6F_5 carbanion in good yields. Predominant or exclusive formation of one geometrical isomer

Introduction

Organosilanes bearing a perfluorinated group have become valuable reagents for the introduction of fluorinated substituents into organic molecules.^[1,2] Thus, in the presence of basic activators (e.g., fluoride or acetate ions) the silicon reagents are activated to generate pentacoordinate species, which serve as a source of fluorinated carbanion in reactions with electrophiles [Equation (1)].

$$R_{F}SIR_{3} \xrightarrow{X^{-}} \begin{bmatrix} R_{F} \\ R_{J} \\ R_{F} \\ R_{T} \end{bmatrix}^{-} \xrightarrow{Y} \\ P_{C} \\ R_{F} \\ R$$

Although the use of silanes for the nucleophilic addition of fluorinated groups to C=O and C=N bonds has been extensively investigated,^[1,3,4] the addition to electron-deficient alkenes is still considered a challenging problem. The difficulties in performing such transformations are associated with low reactivity of typical Michael acceptors bearing nitrile or ester substituents, whereas α , β -unsaturated aldehydes and ketones undergo preferential attack at the carbonyl carbon atom.^[5]

Recently, we reported an approach for the nucleophilic trifluoromethylation of alkenes bearing either two geminal was observed in all cases (Z for nitriles, E for esters and ketones). For substrates containing carbonyl groups, nucleophilic attack of the C₆F₅ carbanion chemoselectively occurred at the C=C bond. Reactions of acylated Baylis–Hillman adducts with Me₃SiCF₃ were found to be inefficient, as the CF₃ carbanion had the propensity to attack the C=O bond of substrates with ester or ketone substituents.

nitrile groups^[6] or Meldrum's acid,^[7] which renders such substrates highly electrophilic.^[8] Here we report the results of studies to extend the scope of the Michael reaction by using fluorinated silanes. We employed compounds of type **A** as Michael acceptors, which can be obtained from aldehydes and simple electron-deficient alkenes by Baylis–Hillman reactions followed by acylation [Equation (2)].

$$R^{\downarrow} + \prod^{Z} \frac{1.Baylis-Hillman}{2. Ac_2 O/Py} R^{\downarrow} Z = CN, CO_2 Me, C(O) Me$$

The presence of the acetoxy group in substrates **A** serves two purposes. Firstly, due to its electron-withdrawing effect, it enhances the electrophilicity of the alkene double bond.^[9] Secondly, after the nucleophilic addition at the C=C bond, the acetoxy group is eliminated, and if acetate anion serves as a Lewis base,^[3b] the process can become catalytic in acetate.^[10] (Scheme 1).

Scheme 1. Proposed reaction mechanism.

The overall transformation may be viewed as an allylic $S_N 2'$ substitution leading to products **B**. The trisubstituted

 [[]a] N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky Prospect 47, Russian Federation Fax: +7-499-135-53-28 E-mail: adil25@mail.ru

[[]b] Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201001051.

FULL PAPER

double bond of products **B** is anticipated to be less reactive than the terminal double bond of **A**. Another important variable is the nature of the silicon reagent. Indeed, we have previously shown that the efficiency of reactions involving silanes is strongly influenced by the number of perfluorinated and heteroatom groups borne by the silicon.^[11] In the case of the trifluoromethyl group, the only available silane is Me₃SiCF₃ (Ruppert–Prakash reagent). Synthesis of other CF₃-containing silanes is complicated.^[12] At the same time, various C₆F₅-substituted silanes can be readily synthesized by using pentafluorophenylmagnesium bromide and chlorosilanes.^[13] Inspired by this realization, we first studied reactions of substrates **A** with C₆F₅-substituted silanes and then with the Ruppert–Prakash reagent.

Results and Discussion

Nitrile 1a was selected as a model substrate and its pentafluorophenylation was carried out. Silanes were employed in ratios leading to 1.5 equivalents of C_6F_5 per equivalent of substrate (Table 1). The addition of sodium acetate (10 mol-%) to a solution of **1a** and $MeSi(C_6F_5)_3$ in DMF at room temperature was exothermic, leading to complete consumption of starting 1a. Disappointingly, product 2a was obtained in only 36% yield under these conditions. The reaction led predominantly to a complex mixture (Table 1, Entry 1). Lowering the reaction temperature to -20 °C led to a doubling of the yield of 2a although longer reaction times were necessary (Table 1, Entry 3). To screen the effectiveness of different solvents, we resorted to the exclusive use of tetrabutylammonium acetate as the acetate source given its high solubility in a variety of media.^[3b] It was ultimately determined that the cleanest reaction occurred in MeCN using 0.05 equivalents of acetate and furnishing 2a in 82% isolated yield as a 94:6 mixture of Z/Eisomers (Table 1, Entry 9).

Attempts to vary the silicon reagent did not lead to further yield improvement (Table 1, Entries 10–14). For example, silanes $Me_2Si(C_6F_5)_2$ and $Me_3SiC_6F_5$ reacted readily but provided complex mixtures, whereas the use of (EtO)₃- SiC_6F_5 afforded lower yields. Notably, the use of fluorosilane $FSi(C_6F_5)_3$, which has been shown to be the most effective silane in reactions mediated by weak Lewis acids,^[11] was completely unproductive.

Under the optimized conditions, a series of nitriles **1** was subjected to pentafluorophenylation using $MeSi(C_6F_5)_3^{[14]}$ (Table 2). The rate of the reaction was found to be sensitive to the nature of the substituent R of substrates **1**. Electronrich systems or, most notably, substrates with aliphatic groups were found to react slowly (e.g., Table 2, Entries 6 and 7). Nevertheless, good yields of products could be achieved for all substrates. The *Z* isomers of **2** were formed predominantly in all cases. The preference for *Z* isomer formation can be rationalized by the greater thermodynamic stability of these isomers relative to the corresponding *E* isomers, which suffer from strong 1,3-allylic interactions between the R and CH₂ groups during the course of the reac-

Table 1. Pentafluorophenylation of nitrile 1a.

	Ph OA	CN silane initiator (cat. 1a	≻ Ph _∿	CN 2a	.C ₆ F ₅	
Entry	Silane ^[a]	Initiator (equiv.)	Solvent	Т [°С]	Time [h]	Yield [%] ^[b]
1	$MeSi(R_F)_3$	NaOAc (0.1)	DMF	20	2	36
2	$MeSi(R_F)_3$	NaOAc (0.1)	DMF	0	3	52
3	$MeSi(R_F)_3$	NaOAc (0.1)	DMF	-20	18	72
4	$MeSi(R_F)_3$	DABCO (0.05)	DMF	-20	18	57
5	$MeSi(R_F)_3$	Et ₃ N·HF (0.05)	DMF	0	18	47
6	$MeSi(R_F)_3$	Bu ₄ NOAc (0.02)	DMF	0	18	56
7	$MeSi(R_F)_3$	Bu ₄ NOAc (0.02)	THF	0	18	46
8	$MeSi(R_F)_3$	Bu ₄ NOAc (0.05)	MeCN	0	18	63
9	$MeSi(R_F)_3$	Bu ₄ NOAc (0.05)	MeCN	-20	18	82 ^[c]
10	$Me_2Si(R_F)_2$	Bu ₄ NOAc (0.05)	DMF	0	18	24
11	$Me_2Si(R_F)_2$	Bu ₄ NOAc (0.05)	MeCN	0	18	40
12	Me_3SiR_F	Bu ₄ NOAc (0.05)	MeCN	0	18	14
13	$FSi(R_F)_3$	Bu ₄ NOAc (0.05)	MeCN	20	18	_[d]
14	$(EtO)_3SiR_F$	Bu ₄ NOAc (0.05)	MeCN	0	18	73

[a] $R_F = C_6F_5$, MeSi(R_F)₃ (0.5 equiv.); Me₂Si(R_F)₂ (0.75 equiv.); Me₃SiR_F (1.5 equiv.); FSi(R_F)₃ (0.5 equiv.); (EtO)₃SiR_F (1.5 equiv.). [b] Determined by NMR spectroscopy with internal standard, unless otherwise noted. [c] Isolated yield. [d] No reaction.

tion. The assignment of configuration was made on the basis of 2D NOESY data for **2a,b,d–f**; the configurations of **2c** and **2g** were assigned by analogy to the former products.

Table 2. Pentafluorophenylation of nitriles 1.

	CN MeSi(C ₆ F ₅) Bu₄NOAc (MeCN, −20) ₃ (0.5 mol-' 5 mol-%)) °C	%) ►	(R (Z)	CN C ₆ F ₅ +	CN C ₆ F ₅ R (E)- 2
Entry	R	Time [h]	2		Yield of 2 [%] ^[a]	Z/E
1	Ph	18		2a	82	94:6
2 ^[b]	4-MeOC ₆ H ₄	6		2b	80	93:7
3	$4-NO_2C_6H_4$	3		2c	93	>99:1
4	1-naphthyl	72		2d	85	>99:1
5	2-furyl	72		2e	81	91:9
6 ^[b]	Et	18		2f	71	96:4
7 ^[b]	cyclohexyl	20		2g	77	86:14

[a] Isolated yield of Z and E isomeric mixture. [b] Reaction performed at 0 $^{\circ}$ C.

We next evaluated the reactivity of substrates in which the double bond was activated by ester or keto groups (Table 3). The reaction of methyl ester **3a** ($\mathbf{R} = \mathbf{Ph}$) with MeSi(C₆F₅)₃ afforded only 50% yield of desired product **4a** regardless of temperature, solvent, and amount of activator (Table 3, Entries 1–4). The use of other silanes in DMF led to increased yields with the optimum case being with Me₃-SiC₆F₅ (Table 3, Entry 9). Ester substrates **3b–f** were also subjected to the optimized pentafluorophenylation conditions and products **4b–f** were furnished in high yield

European Journal of Organic Chemistry

Table 3. Pentafluorophenylation of substrates 3 and 5.

Entry	Ζ	R	Sub- strate	Silane (equiv.)	Solvent	<i>Т</i> [°С]	Time [h]	Conv. [%]	Product	Yield ^[a] [%]	E/Z
1	CO ₂ Me	Ph	3a	$MeSi(C_6F_5)_3$ (0.5)	MeCN	-20	18	54	4a	[b]	
2	-		3a	$MeSi(C_6F_5)_3$ (0.5)	MeCN	20	24	41	4a	(27)	85:15
3 ^[c]			3a	$MeSi(C_6F_5)_3$ (0.5)	THF	-20→20	18	25	4a	[b]	
4			3a	$MeSi(C_6F_5)_3$ (0.5)	DMF	20	18	52	4a	(25)	89:11
5			3a	$Me_2Si(C_6F_5)_2$ (0.75)	MeCN	-20	18	91	4 a	(23)	92:8
6			3a	$Me_2Si(C_6F_5)_2$ (0.75)	DMF	-20	18	76	4a	(58)	89:11
7			3a	$Me_2Si(C_6F_5)_2$ (0.75)	DMF	-20→0	18	100	4a	(55)	88:12
8			3a	$Me_3SiC_6F_5$ (1.5)	DMF	-20→0	18	100	4a	(73)	89:11
9			3a	$Me_3SiC_6F_5$ (1.5)	DMF	-20	18	100	4a	83	87:13
10		$4-NO_2C_6H_4$	3b	$Me_{3}SiC_{6}F_{5}$ (1.5)	DMF	-20	4	100	4b	85	94:6
11		4-MeOC ₆ H ₄	3c	$Me_{3}SiC_{6}F_{5}$ (1.5)	DMF	-20	18	100	4c	91	88:12
12		2-pyridyl	3d	$Me_3SiC_6F_5$ (1.5)	DMF	-20	3	100	4d	70	>99:1
13		2-thienyl	3e	$Me_{3}SiC_{6}F_{5}$ (1.5)	DMF	-20	18	100	4 e	80	82:18
14		Et	3f	$Me_3SiC_6F_5$ (1.5)	DMF	-20	20	100	4f	86	81:19
15	C(O)Me	Ph	5a	$MeSi(C_6F_5)_3$ (0.5)	MeCN	-20→0	18	100	6a	61	>99:1
16			5a	$MeSi(C_6F_5)_3$ (0.5)	DMF	-20	72	87	6a	62	>99:1
17			5a	$Me_3SiC_6F_5$ (1.5)	DMF	-20	8	100	6a	(80) ^[d]	>99:1
18			5a	$Me_2Si(C_6F_5)_2$ (0.75)	DMF	-20	18	100	6a	88	>99:1
19		4-NO ₂ C ₆ H ₄	5b	$Me_2Si(C_6F_5)_2$ (0.75)	DMF	-20	3	100	6b	80	>99:1
20		PhCH ₂ CH ₂	5c	$Me_2Si(C_6F_5)_2$ (0.75)	DMF	-20	21	100	6c	88	>99:1

[a] Isolated yield. The yields in parenthesis were determined by NMR spectroscopy with internal standard. [b] Complex mixture was formed with yield of desired product <20%. [c] 0.2 equiv. Bu₄NOAc was used. [d] Small amounts of unidentified byproducts were observed.

(Table 3, Entries 10–14). In contrast to nitrile products 2, which bore predominantly the Z configuration, esters 4 were produced primarily as E isomers with a *trans* arrangement of the R substituent and the bulkier ester group. The assignment of configuration of 4a,f was made on the basis of 2D NOESY; configuration of 4b–e was established by analogy according to systematic chemical shift differences.^[15]

Reactions of ketones 5 proceed to completion even at low temperature, reflecting the enhanced reactivity of these Michael acceptors compared to esters 3. Brief variation of the silane performed with substrate 5a (R = Ph) demonstrated that $Me_2Si(C_6F_5)_2$ is the ideal C_6F_5 source. The substrates with aromatic and aliphatic groups reacted cleanly to afford desired products 6a-c in excellent yields exclusively as the *E* isomers (Table 3, Entries 18–20) The *E* configuration of 6a-c was established by 2D NOESY spectra. Products arising from nucleophilic addition at the C=O bond were not detected in crude material.

It is clear that for pentafluorophenylation reactions all substrates (nitriles, esters, and ketones) can be effectively converted in good yields although different silicon reagents $Me_nSi(C_6F_5)_{4-n}$ (n = 1-3) have to be employed for each type of substrate. Although the underlying reason for this phenomenon is not clear at present, we propose that the effi-

ciency of particular silane/substrate combinations depends on the reactivity of the corresponding five-coordinate siliconate species, which serves as the nucleophile.

We next studied reactions of Baylis–Hillman adducts with the Ruppert–Prakash reagent, which would lead to CF₃-containing products. Trifluoromethylation of substrates **1a**, **3a**, and **5a** was performed in the presence of Bu₄NOAc (5 mol-%), and the results are summarized in Scheme 2.

Trifluoromethylation of nitrile 1a gave desired product 7 in moderate yield, and all attempts to improve the efficiency of this process were unsuccessful. Ester substrate 3a gave an inseparable mixture containing compounds 8 and 9 (both existing as isomeric mixtures) in a combined yield of 30%. Reaction of ketone 5a with the Ruppert–Prakash reagent furnished 10 as a mixture of two diastereoisomers (1.5:1 dr); Michael addition products were not observed. The results obtained using 3a and 5a suggest that, for reactions with Me₃SiCF₃, the increase in C=C bond electrophilicity in changing from an ester to a ketone substituent is overwhelmed by the increased reactivity of the ketone carbonyl group. This observation contrasts the results obtained with reactions of 3a and 5a with C₆F₅-substituted silanes in which the only products observed result from nucleophilic attack at the C=C bond.

Scheme 2. Trifluoromethylation reactions.

Conclusions

The reactions of acylated Baylis–Hillman adducts with C_6F_5 -substituted silicon reagents proceed under mild conditions by using catalytic amounts of tetrabutylammonium acetate and furnish the corresponding products in good yields. However, the optimized conditions require different silicon reagents Me_nSi(C_6F_5)_{4–n} (n = 1–3) for different substrate types. The products are formed either as predominantly Z isomers in the case of nitrile substrates, or as predominantly E isomers in case of ester or ketone substrates. Of special note is that ketone substrates underwent exclusive nucleophilic attack by the C_6F_5 carbanion at the C=C bond in preference to the carbonyl group. The reactions of Baylis–Hillman adducts with Me₃SiCF₃ are inefficient with nucleophilic attack at the carbonyl group being a serious undesirable pathway.

Experimental Section

General Remarks: All reactions were performed under an argon atmosphere. DMF was distilled under vacuum from P_2O_5 and stored over 4 Å MS. MeCN was successively distilled from P_2O_5 and CaH₂ and stored over 4 Å MS. Column chromatography was carried out on Merck silica gel (Kieselgel 60, 230–400 mesh). Silica gel plates coated with F-254 indicator were used for thin-layer analytical chromatography and compounds were visualized with UV and/or acidic aq. KMnO₄ solution. NMR spectra were recorded with a Bruker AM-300 instrument. For minor isomers characteristic signals are given. Microanalyses were performed with a Karlo Erba 1106 instrument. For the synthesis of Baylis–Hillman acetates, see the Supporting Information.

General Procedure for Pentafluorophenylation of Nitriles 1 (Procedure A): Tetrabutylammonium acetate (15 mg, 0.05 mmol) was added to a mixture of 1 (1.0 mmol) and $(C_6F_5)_3$ SiMe (272 mg, 0.5 mmol) in MeCN (2 mL) at -20 °C, and the resulting suspension was stirred under conditions described in Table 2. For workup, the mixture was quenched with 0.5 M HCl (12 mL), and the aqueous phase was extracted with Et₂O (3×5 mL). The combined organic layer was filtered through Na₂SO₄ and concentrated, and the residue was purified by column chromatography.

General Procedure for Pentafluorophenylation of Esters 3: Tetrabutylammonium acetate (15 mg, 0.05 mmol) was added to a mixture of 3 (1.0 mmol) and $C_6F_5SiMe_3$ (360 mg, 1.5 mmol) in DMF (2 mL) at -20 °C. The reaction mixture was kept at this temperature for the time given in Table 3 and worked up as described in procedure A.

General Procedure for Pentafluorophenylation of Enones 5: Tetrabutylammonium acetate (15 mg, 0.05 mmol) was added to a mixture of 5 (1.0 mmol) and $(C_6F_5)_2SiMe_2$ (294 mg, 0.75 mmol) in DMF (2 mL) at -20 °C. The reaction mixture was kept at this temperature for the time given in Table 3 and worked up as described in procedure A.

2-[(Pentafluorophenyl)methyl]-3-phenylacrylonitrile (2a): Yield: 254 mg (82%), E/Z = 6.94. M.p. 68–70 °C. $R_f = 0.21$ (hexane/ EtOAc, 8:1). ¹H NMR (300 MHz, CDCl₃, Z isomer): δ = 3.82 (s, 2 H, CH₂), 7.11 (s, 1 H, CH), 7.38–7.51 (m, 3 H, CH_{Ar}), 7.69–7.81 (m, 2 H, CH_{Ar}) ppm. ¹H NMR (300 MHz, CDCl₃, *E* isomer): δ = 3.91 (s, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃, Z isomer): δ = 28.6 (m), 106.3, 110.1 (tm, J = 17.9 Hz), 117.5, 128.8, 128.9, 130.7, 132.6, 137.7 (dm, J = 247.6 Hz), 140.9 (dm, J = 247.6 Hz), 145.4 (dm, J = 248.8 Hz), 145.5 ppm. ¹³C NMR (75 MHz, CDCl₃, *E* isomer): δ = 22.7, 129.8, 133.2, 146.2 ppm. ¹⁹F (282 MHz, CDCl₃, Z isomer): $\delta = -164.6$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), -157.6 (t, J = 21.2 Hz, F, para), -145.5 (dd, J = 21.2, 8.5 Hz, *ortho*) ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer): $\delta = -164.8$ (m, 2F, *meta*), -145.1 (dd, J = 21.2, 8.5 Hz, 1 F, *ortho*) ppm. C₁₆H₈F₅N (309.23): calcd. C 62.14, H 2.61, N 4.53; found C 62.07, H 2.65, N 4.35.

3-(4-Methoxyphenyl)-2-[(pentafluorophenyl)methyl]acrylonitrile (2b): Yield: 271 mg (80%), E/Z = 7.93. M.p. 50–52 °C. $R_f = 0.21$ (hexane/EtOAc, 5:1). ¹H NMR (300 MHz, CDCl₃, Z isomer): δ = 3.78 (s, 2 H, CH₂), 3.85 (s, 3 H, OMe), 6.93 (d, J = 8.8 Hz, 2 H, CH_{Ar}), 7.02 (s, 1 H, =CH), 7.72 (d, J = 8.8 Hz, 2 H, CH_{Ar}) ppm. ¹H NMR (300 MHz, CDCl₃, *E* isomer): δ = 3.87 (s, 3 H, OMe), 3.91 (s, 2 H, =CH), 7.31 (s, 1 H, =CH), 7.36 (d, J = 8.8 Hz, 2 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃, Z isomer): δ = 28.5, 55.4, 103.1, 110.5 (tm, J = 18.1 Hz), 114.3, 118.1, 125.6, 138.7, 137.7 (dm, J = 247.6 Hz), 140.8 (dm, J = 248.2 Hz), 145.1, 145.4 (dm, J)= 248.2 Hz), 161.5 ppm. ¹³C NMR (75 MHz, CDCl₃, *E* isomer): δ = 114.4, 131.2, 145.7 ppm. ¹⁹F (282 MHz, CDCl₃, Z isomer): δ = -164.7 (ddd, J = 21.2, 21.2, 6.4 Hz, 2 F, meta), -157.9 (t, J =21.2 Hz, 1 F, para), -145.6 (dd, J = 21.2, 6.4 Hz, 2 F, ortho) ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer): -164.8 (m, 2 F, *meta*), -157.7 (t, J = 21.2 Hz, 1 F, para), -145.2 (dd, J = 21.2, 6.4 Hz, 2 F, ortho) ppm. C₁₇H₁₀F₅NO (339.26): calcd. C 60.18, H 2.97, N 4.13; found C 60.11, H 3.03, N 4.07.

(2*Z*)-3-(4-Nitrophenyl)-2-[(pentafluorophenyl)methyl]acrylonitrile (2c): Yield: 329 mg (93%), E/Z = <1:99. M.p. 80–82 °C. $R_{\rm f} = 0.22$ (hexane/EtOAc, 4:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.88$ (s, 2 H, CH₂), 7.18 (s, 1 H, =CH), 7.89 (d, J = 8.8 Hz, 2 H, CH_{Ar}), 8.28 (d, J = 8.8 Hz, 2 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 28.7$, 109.3 (tm, J = 18.1 Hz), 111.2, 116.6, 124.1, 129.6, 137.7 (dm, J = 247.6 Hz), 138.7, 141.0 (dm, J = 247.1 Hz), 142.6, 145.4 (dm, J = 248.0 Hz), 148.5 ppm. ¹⁹F (282 MHz, CDCl₃): $\delta = -164.0$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, *meta*),-156.7 (t, J = 21.2 Hz, 1 F, *para*), -145.3 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. C₁₆H₇F₅N₂O₂ (354.23): calcd. C 54.25, H 1.99, N 7.91; found C 54.27, H 1.98, N 7.74.

(2*Z*)-3-(Naphthalen-1-yl)-2-[(pentafluorophenyl)methyl]acrylonitrile (2d): Yield: 305 mg (85%). M.p. 126–128 °C. $R_{\rm f}$ = 0.30 (hexane/ EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃): δ = 3.93 (s, 2 H, CH₂), 7.48–7.65 (m, 3 H, CH_{Ar}), 7.80–7.98 (m, 5 H, 4 CH_{Ap} =CH), 7.90

(s, 1 H, CH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 28.3 (m), 110.1 (tm, J = 18.1 Hz), 110.2, 117.1, 122.9, 125.3, 126.4, 126.7, 127.0, 128.8, 130.1, 130.7, 131.0, 133.3, 137.7 (dm, J = 247.6 Hz), 140.9 (dm, J = 247.8 Hz), 144.0, 145.3 (dm, J = 248.2 Hz) ppm. ¹⁹F NMR (282 MHz, CDCl₃): δ = -161.9 (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, *meta*), -154.9 (t, J = 21.2 Hz, 1 F, *para*), -143.1 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. C₂₀H₁₀F₅NO (359.29): calcd. C 66.86, H 2.81, N 3.90; found C 66.75, H 2.84, N 3.75.

3-(2-Furyl)-2-[(pentafluorophenyl)methyl]acrylonitrile (2e): Yield: 242 mg (81%), E/Z = 9:91. M.p. 74–75 °C. $R_f = 0.31$ (hexane/ EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃, Z isomer): δ = 3.75 (s, 2 H, CH₂), 6.52 (dd, J = 3.7, 1.8 Hz, 1 H, OCH=CH), 6.88 (s, 1 H, NC-C=CH), 7.00 (d, J = 3.7 Hz, 1 H, C=CH), 7.55 (d, J = 1.8 Hz, 1 H, OCH) ppm. ¹H NMR (300 MHz, CDCl₃, *E* isomer): 4.16 (s, 2 H, CH₂), 6.58 (dd, J = 3.7, 1.8 Hz, 1 H, OCH=CH), 6.72 (d, J = 3.7 Hz, 1 H, C=CH), 6.96 (s, 1 H, NC-C=CH), 7.63 (d, J = 1.8 Hz, 1 H, OCH) ppm. ¹³C NMR (75 MHz, CDCl₃, Z isomer): $\delta = 27.6, 102.5, 110.1 \text{ (tm, } J = 18.1 \text{ Hz}\text{)}, 112.5, 115.1, 117.5, 132.1,$ 137.6 (dm, J = 247.6 Hz), 140.9 (dm, J = 247.6 Hz), 145.0, 145.4 (dm, J = 247.6 Hz), 149.0 ppm. ¹⁹F (282 MHz, CDCl₃, Z isomer): $\delta = -161.8$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), -155.1 (t, J =21.2 Hz, 1 F, para), -143.1 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer): -162.5 (m, 2 F, *meta*), -155.6 (t, J = 21.2 Hz, para), -142.5 (dd, J = 21.2, 8.5 Hz, ortho) ppm.C14H6F5NO (299.20): calcd. C 56.20, H 2.02, N 4.68; found C 56.25, H 2.02, N 4.68.

2-[(Pentafluorophenyl)methyl]pent-2-enenitrile (2f): Yield: 185 mg (71%), E/Z = 4:96. Oil. $R_{\rm f} = 0.26$ (hexane/EtOAc, 10:1). ¹H NMR (300 MHz, CDCl₃, Z isomer): $\delta = 1.08$ (t, J = 7.5 Hz, 3 H, CH₃), 2.39 (qd, J = 7.5, 7.4 Hz, 2 H, CH₂CH), 3.61 (s, 2 H, CH₂), 6.32 (t, J = 7.4, = Hz, 1 HCH) ppm. ¹H NMR (300 MHz, CDCl₃, *E* isomer): $\delta = 1.11$ (t, J = 7.2 Hz, 3 H, CH₃), 6.47 (t, J = 7.7 Hz, 1 H, CH) ppm. ¹³C NMR (75 MHz, CDCl₃, *Z* isomer): $\delta = 12.7$, 25.0, 26.8 (m), 109.6, 110.2 (m, J = 18.0 Hz), 116.2, 137.7 (dm, J = 247.6 Hz), 140.9 (dm, J = 247.2 Hz), 145.3 (dm, J = 248.2 Hz), 151.7 ppm. ¹⁹F (282 MHz, CDCl₃, *Z* isomer): $\delta = -165.0$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, *meta*), -158.2 (t, J = 21.2 Hz, F, *para*), -146.0 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer: -145.6 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. C₁₂H₈F₅N (261.19): calcd. C 55.18, H 3.09, N 5.36; found C 55.07, H 3.17, N 5.37.

3-Cyclohexyl-2-[(pentafluorophenyl)methyl]acrylonitrile (2g): Yield: 243 mg (77%), E/Z = 14:86. Oil. $R_{\rm f} = 0.28$ (hexane/EtOAc, 12:1). ¹H NMR (300 MHz, CDCl₃, Z isomer): $\delta = 1.06-1.43$ (m, 5 H, $5CH_{Cv}$, 1.63–1.81 (m, 5 H, 5 CH_{Cv}), 2.53 (dtt, J = 10.5, 10.5, 3.3 Hz, 1 H, CH_{Cy}), 3.59 (s, 2 H, C₆F₅-CH₂), 6.16 (d, J = 9.9 Hz, 1 H, C=CH) ppm. ¹H NMR (300 MHz, CDCl₃, *E* isomer): 3.65 (s, 2 H, CH₂), 6.31 (dt, *J* = 10.3, 1.5 Hz, 1 H, C=CH) ppm. ¹³C NMR (75 MHz, CDCl₃, Z isomer): δ = 25.1, 25.5, 27.0 (m), 31.5, 31.8, 40.8, 109.9–110.7 (m), 137.4 (dm, J = 247.5 Hz), 140.9 (dm, J =247.5 Hz), 145.2, (dm, J = 247.5 Hz), 155.4 ppm. ¹³C NMR (75 MHz, CDCl₃, *E* isomer): δ = 25.2, 26.2, 31.5, 38.2, 155.2 ppm. ¹⁹F (282 MHz, CDCl₃, Z isomer): δ = -162.3 (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), -155.5 (t, J = 21.2 Hz, 1 F, para), -143.4 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. ¹⁹F (282 MHz, CDCl₃, E isomer): $\delta = -155.4$ (m, 1 F, para), -143.0 (dd, J = 21.2, 8.5 Hz, 2 F, or*tho*) ppm. C₁₆H₁₄F₅N (315.28): calcd. C 60.95, H 4.48, N 4.44; found C 61.04, H 4.54, N 4.45.

Methyl 2-[(Pentafluorophenyl)methyl]-3-phenylacrylate (4a): Yield: 284 mg (83%), E/Z = 87:13. Oil. $R_{\rm f} = 0.24$ (hexane/EtOAc, 10:1). ¹H NMR (300 MHz, CDCl₃, *E* isomer): $\delta = 3.78$ (s, 3 H, OMe), 3.95 (s, 2 H, CH₂), 7.31–7.47 (m, 5 H, CH_{Ar}), 7.92 (s, 1 H,

=CH) ppm. ¹H NMR (300 MHz, CDCl₃, *Z* isomer): δ = 3.63 (s, 3 H, OMe), 3.82 (s, 2 H, CH₂), 6.72 (s, 1 H, =CH) ppm. ¹³C NMR (75 MHz, CDCl₃, *E* isomer): δ = 21.5 (m), 52.1, 112.4 (tm, *J* = 16.5 Hz), 128.2, 128.5, 128.7, 135.1, 137.3 (dm, *J* = 251.4 Hz), 139.6 (dm, *J* = 250.8 Hz), 141.9, 145.4 (dm, *J* = 250.8 Hz), 167.3 ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer): δ =-164.1 (ddd, *J* = 21.2, 21.2, 8.5 Hz, 2 F, meta), -158.3 (t, *J* = 21.2 Hz, 1 F, para), -142.7 (dd, *J* = 21.2, 8.5 Hz, ortho) ppm. C₁₇H₁₁F₅O₂ (342.26): calcd. C 59.66, H 3.24; found C 59.71, H 3.31.

Methyl 3-(4-Nitrophenyl)-2-[(pentafluorophenyl)methyl]acrylate (4b): Yield: 329 mg (85%), E/Z = 94:6. M.p. 104–106 °C. $R_f = 0.23$ (hexane/EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃, E isomer): δ = 3.79 (s, 3 H, OMe), 3.88 (s, 2 H, CH₂), 7.52 (d, J = 8.8 Hz, 2 H, CH_{Ar}), 7.91 (s, 1 H, =CH), 8.28 (d, J = 8.8 Hz, 2 H, CH_{Ar}) ppm. ¹H NMR (300 MHz, CDCl₃, Z isomer): δ = 3.65 (s, 3 H, OMe), 6.78 (s, 1 H, =CH), 7.39 (d, J = 8.8 Hz, 2 H, CH_{Ar}), 8.17 (d, J =8.8 Hz, 2 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, $CDCl_3$, E isomer): $\delta = 21.4, 52.4, 111.9 - 112.1$ (m), 123.4, 123.8, 129.0, 129.5, 131.1, 137.3 (dm, J = 252.0 Hz), 139.7 (dm, J = 250.1 Hz), 145.2 (m, J =250.1 Hz), 147.6, 166.5 ppm. ¹⁹F (282 MHz, CDCl₃, E isomer): δ = -163.4 (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), -157.2 (t, J =21.2 Hz, 1 F, para), -142.7 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. Z isomer: $\delta = -162.6$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), -156.0 (t, J = 21.2 Hz, 1 F, para), -143.2 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. C₁₇H₁₀F₅NO₄ (387.26): calcd. C 52.73, H 2.60, N 3.62; found C 52.69, H 2.54, N 3.61.

Methyl 3-(4-Methoxyphenyl)-2-[(pentafluorophenyl)methyl]acrylate (4c): Yield: 339 mg (91%), E/Z = 88:12. Oil. $R_f = 0.26$ (hexane/ EtOAc, 8:1). ¹H NMR (300 MHz, CDCl₃, *E* isomer): δ = 3.76 (s, 3 H, OMe), 3.83 (s, 3 H, CO_2Me), 3.97 (s, 2 H, CH_2), 6.93 (d, J =8.8 Hz, 2 H, CH_{Ar}), 7.33 (d, J = 8.8 Hz, 2 H, CH_{Ar}), 7.84 (s, 1 H, =CH) ppm. ¹H NMR (300 MHz, CDCl₃, Z isomer): δ = 3.67 (s, 3 H, OCH₃), 3.78 (s, 2 H, CH₂), 3.79 (s, 3 H, CO₂Me), 6.67 (s, 1 H, =CH), 6.82 (d, J = 8.8 Hz, 2 H, CH_{Ar}), 7.21 (d, J = 8.8 Hz, 2 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃, *E* isomer): δ = 21.5 (m), 51.9, 55.2, 113.1 (tm, *J* = 18.2 Hz), 114.0, 126.0, 127.3, 130.7, 137.3 (dm, J = 250.5 Hz), 139.7 (dm, J = 250.9 Hz), 141.5, 145.4 (dm, J = 250.9 Hz), 160.1, 167.6 ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer): δ = -164.2 (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), -158.6 (t, J = 21.2 Hz, 1 F, para), -142.9 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. $C_{18}H_{13}F_5O_3$ (372.29): calcd. C 58.07, H 3.52; found C 58.20, H 3.53.

Methyl (2*E***)-2-[(Pentafluorophenyl)methyl]-3-(pyridin-2-yl)acrylate (4d):** Yield: 240 mg (70%). M.p. 61–63 °C. $R_f = 0.24$ (hexane/ EtOAc, 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.80$ (s, 3 H, OMe), 4.66 (s, 2 H, CH₂), 7.23 (ddd, J = 7.7, 4.7, 1.2 Hz, 1 H, N–CH=CH), 7.37 (ddd, J = 7.7, 1.2, 1.0 Hz, 1 H, N–C=CH), 7.68–7.76 (m, 2 H, =CH, N–C=CH–CH), 8.65 (ddd, J = 4.7, 1.8, 1.0 Hz, 1 H, N–CH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 21.1$ (m), 52.3, 113.9 (tm, J = 16.5 Hz), 123.2, 126.9, 131.2, 136.5, 137.3 (dm, J = 250.6 Hz), 138.2, 139.5 (dm, J = 250.6 Hz), 145.6 (dm, J = 248.5 Hz), 149.3, 154.0, 167.8 ppm. ¹⁹F (282 MHz, CDCl₃), $\delta = -164.8$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, *meta*), -159.4 (t, J = 21.2 Hz, 1 F, *para*), -142.7 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. C₁₆H₁₀F₅NO₂ (343.25): calcd. C 55.99, H 2.94, N 4.08; found C 55.94, H 2.91, N 4.05.

Methyl 2-[(Pentafluorophenyl)methyl]-3-(2-thienyl)acrylate (4e): Yield: 279 mg (80%), E/Z = 82:18. M.p. 46–48 °C. $R_f = 0.37$ (hexane/EtOAc, 8:1). ¹H NMR (300 MHz, CDCl₃, *E* isomer): $\delta = 3.77$ (s, 3 H, OMe), 4.12 (s, 2 H, CH₂), 7.13 (dd, J = 5.1, 3.7 Hz, 1 H, S–CH=CH), 7.34 (d, J = 4.7 Hz, 1 H, S–C=CH), 7.52 (d, J =5.1 Hz, 1 H, S–CH), 8.00 (s, 1 H, =CH) ppm. ¹H NMR (300 MHz,

FULL PAPER

CDCl₃, Z isomer): δ = 3.82 (s, 3 H, OMe), 7.00 (s, 1 H, =CH), 7.03 (dd, J = 5.1, 3.7 Hz, 1 H, S–CH=CH), 7.26 (d, J = 3.7 Hz, 1 H, C=CH), 7.44 (d, J = 5.1 Hz, 1 H, S–CH) ppm. ¹³C NMR (75 MHz, CDCl₃, E isomer): δ = 22.3 (m), 52.1, 112.5 (tm, J = 16.2 Hz), 123.6, 127.4, 129.7, 133.3, 133.9, 137.4 (dm, J = 250.3 Hz), 137.5, 139.8 (dm, J = 250.3 Hz), 145.6 (dm, J = 250.3 Hz), 175.2 ppm. ¹⁹F (282 MHz, CDCl₃, E isomer): δ =–164.0 (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), –158.2 (t, J = 21.2 Hz, 1 F, para), –142.5 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. ¹⁹F (282 MHz, CDCl₃, Z isomer): δ = –163.3 (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, meta), –157.2 (t, J = 21.2 Hz, 1 F, para), –143.2 (dd, J = 21.2, 8.5 Hz, 2 F, ortho) ppm. C₁₅H₉F₅O₂S (348.29): calcd. C 51.73, H 2.60; found C 51.67, H 2.61.

Methyl 2-[(Pentafluorophenyl)methyl]pent-2-enoate (4f): Yield: 253 mg (86%), *E*/*Z* = 81:19. Oil. *R*_f = 0.27 (hexane/EtOAc, 25:1). ¹H NMR (300 MHz, CDCl₃, *E* isomer): δ = 1.10 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 2.34 (qd, *J* = 7.5, 7.4 Hz, 2 H, CH₂CH₃), 3.70 (s, 3 H, OMe), 6.92 (t, *J* = 7.4, 1 HCH) ppm. ¹H NMR (300 MHz, CDCl₃, *Z* isomer): δ = 1.01 (t, *J* = 7.5, 3 H, CH₂CH₃), 2.48 (qd, *J* = 7.5, 7.4 Hz, 2 H, CM₂CH₃), 2.48 (qd, *J* = 7.5, 7.4 Hz, 2 H, CH₂CH₃), 3.72 (s, 3 H, OMe), 5.93 (t, *J* = 7.5 Hz, 1 H, =CH) ppm. ¹³C NMR (75 MHz, CDCl₃, *E* isomer): δ = 12.9, 20.3 (m), 22.2 (t, *J* = 1.4 Hz), 51.8, 113.2 (tm, *J* = 18.5 Hz), 126.7, 137.4 (dm, *J* = 251.4 Hz), 139.8 (dm, *J* = 251.4 Hz), 145.5 (dm, *J* = 251.4 Hz), 147.4, 167.2 ppm. ¹⁹F (282 MHz, CDCl₃, *E* isomer): δ =-164.1 (ddd, *J* = 21.2, 21.2, 8.5 Hz, 2 F, *meta*),-158.4 (t, *J* = 21.2 Hz, 1 F, *para*), -143.1 (dd, *J* = 21.2, 8.5 Hz, *ortho*) ppm. C₁₃H₁₁F₅O₂ (294.22): calcd. C 53.07, H 3.77; found C 52.89, H 3.65.

(3*E*)-3-[(Pentafluorophenyl)methyl]-4-phenylbut-3-en-2-one (6a): Yield: 287 mg (88%). Oil. $R_{\rm f} = 0.22$ (hexane/EtOAc, 10:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.46$ (s, 3 H, CH₃), 3.89 (s, 2 H, CH₂), 7.29–7.46 (m, 5 H, CH_{Ar}), 7.74 (s, 1 H, =CH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 20.6$ (m), 25.7, 113.3 (tm, J = 16.5 Hz), 128.61, 128.63, 128.9, 135.0, 137.2 (dm, J = 250.8 Hz), 137.9, 139.4 (dm, J = 250.8 Hz), 142.1 (dm, J = 250.8 Hz), 142.2, 198.7 ppm. ¹⁹F (282 MHz, CDCl₃): $\delta = -164.3$ (ddd, J = 21.2, 21.2, 8.5 Hz, 2 F, *meta*), -158.9 (t, J = 21.2 Hz, 1 F, *para*), -143.0 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. C₁₇H₁₁F₅O (326.26): calcd. C 62.58, H 3.40; found C 62.62, H 3.48.

(3*E*)-4-(4-Nitrophenyl)-3-[(pentafluorophenyl)methyl]but-3-en-2-one (6b): Yield: 297 mg (80%). M.p. 108–109 °C. $R_{\rm f}$ = 0.21 (hexane/ EtOAc, 4:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.47 (s, 3 H, CH₃), 3.82 (s, 2 H, CH₂), 7.52 (d, *J* = 8.6 Hz, 2 H, CH_{Ar}), 7.73 (s, 1 H, =CH), 8.28 (d, *J* = 8.6 Hz, 2 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 20.6, 25.7, 112.4 (tm, *J* = 17.3 Hz), 123.9, 129.5, 137.2 (dm, *J* = 250.2 Hz), 139.2, 139.7 (dm, *J* = 251.4 Hz), 140.3, 141.6, 145.0 (dm, *J* = 250.2 Hz), 147.7, 198.0 ppm. ¹⁹F (282 MHz, CDCl₃): δ = -163.6 (ddd, *J* = 21.2, 21.2, 8.5 Hz, 2 F, meta), -157.8 (t, *J* = 21.2 Hz, 1 F, para), -142.9 (dd, *J* = 21.2, 8.5 Hz, 2 F, ortho) ppm. C₁₇H₁₀F₅NO₃ (371.26): calcd. C 55.00, H 2.71, N 3.77; found C 55.14, H 2.71, N 3.64.

(3*E*)-3-[(Pentafluorophenyl)methyl]-6-phenylhex-3-en-2-one (6c): Yield: 312 mg (88%). Oil. $R_f = 0.24$ (hexane/EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.29$ (t, J = 7.5 Hz, 3 H, CH₃), 2.68 (dt, J = 7.2, 7.2 Hz, 2 H, PhCH₂CH₂), 2.82 (t, 2 H, PhCH₂), 3.62 (s, 2 H, C₆F₃CH₂), 6.79 (t, J = 7.2 Hz, 1 H, CH), 7.15–7.35 (m, 5 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.1$, 25.4, 31.0, 34.6, 113.3 (tm, J = 17.8 Hz), 126.4, 128.3, 128.6, 137.2 (dm, J =251.0 Hz), 138.0, 139.6 (dm, J = 251.1 Hz), 145.0, 145.2 (dm, J =251.1 Hz), 198.0 ppm. ¹⁹F (282 MHz, CDCl₃): $\delta = -164.0$ (ddd, J =21.2, 21.2, 8.5 Hz, 2 F, meta), -158.7 (t, J = 21.2 Hz, 1 F, para), -142.9 (dd, J = 21.2, 8.5 Hz, 2 F, *ortho*) ppm. C₁₉H₁₅F₅O (354.31): calcd. C 64.41, H 4.27; found C 64.46, H 4.28.

(2Z)-3-Phenyl-2-(2,2,2-trifluoroethyl)acrylonitrile (7) (Procedure B): Tetrabutylammonium acetate (15 mg, 0.05 mmol) was added to a mixture of nitrile 1a (201 mg, 1.0 mmol) and CF₃SiMe₃ (221 µL, 1.5 mmol) in MeCN (2 mL) at -20 °C, and the resulting suspension was stirred at 0 °C for 18 h. For workup, the mixture was quenched by the addition of 0.5 M HCl (4 mL) and water (8 mL). The aqueous phase was extracted with Et₂O (3×5 mL), and the combined organic layer was filtered through Na₂SO₄ and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 5:1) to give the product (187 mg) containing ca. 7% of an unidentified impurity (based on ¹⁹F NMR), thereby corresponding to ca. 40% yield of compound 7. Subsequent recrystallization from a large amount of hexane/EtOAc (6:1) afforded analytically pure material. M.p. 62–66 °C $R_{\rm f}$ = 0.27 (hexane/EtOAc, 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 3.18 (q, J = 9.6 Hz, 2 H, CH₂), 7.17 (s, 1 H, =CH), 7.44-7.52 (m, 3 H, CH_{Ar}), 7.76-7.85 (m, 2 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 40.1 (q, J = 31.3 Hz), 99.4, 117.5, 124.6 (q, J = 277.8 Hz), 129.0, 129.1, 131.3, 132.5, 150.2 ppm. ¹⁹F (282 MHz, CDCl₃): δ = -66.7 (t, J = 9.6 Hz, 3 F, CF₃) ppm. C₁₁H₈F₃N (211.18): calcd. C 62.56, H 3.82, N 6.63; found C 62.61, H 3.72, N 6.54. The Z configuration was established by 2D NOESY experiments.

Trifluoromethylation of Ester 3a: Production of 3a was performed in a fashion similar to procedure B, but using DMF as solvent and stirring at -20 °C for 18 h. The crude material contained equimolar amounts of compounds 8 and 9 as well as unidentified impurities. Column chromatography (hexane/EtOAc, 20:1) afforded an inseparable mixture of compounds 8 and 9, which was analyzed by ¹⁹F NMR spectroscopy with PhCF₃ as an internal standard.

Methyl 3-Phenyl-2-(2,2,2-trifluoroethyl)acrylate (8): Mixture of isomers, 4:1. Oil. $R_f = 0.24$ (hexane/EtOAc, 20:1). ¹H NMR (300 MHz, CDCl₃, major isomer): $\delta = 3.46$ (q, J = 10.2 Hz, 2 H, CH₂CF₃), 3.88 (s, 3 H, OMe), 8.01 (s, 1 H, =CH), 7.23–7.50 (m, 5 H, Ph) ppm. ¹H NMR (300 MHz, CDCl₃, minor isomer): $\delta = 3.68$ (s, 3 H, OMe), 7.00 (s, 1 H, =CH) ppm. ¹³C NMR (75 MHz, CDCl₃, major isomer): $\delta = 32.2$ (q, J = 30.7 Hz), 52.5, 125.6 (q, J = 278.1 Hz), 167.6 ppm. ¹³C NMR (75 MHz, CDCl₃, minor isomer): $\delta = 39.3$ (q, J = 30.4 Hz), 52.0, 168.0 ppm. ¹⁹F (282 MHz, CDCl₃, major isomer): $\delta = -64.1$ (t, J = 9.5 Hz, 3 F, CF₃) ppm. ¹⁹F (282 MHz, CDCl₃, minor isomer): $\delta = -66.7$ (t, J = 10.6 Hz, 3 F, CF₃) ppm.

1-Phenyl-2-{2,2,2-trifluoro-1-methoxy-1-[(trimethylsilyl)oxy]-ethyl}prop-2-en-1-yl Acetate (9): Mixture of isomers, 1:1; characteristic signals are given. ¹H NMR (300 MHz, CDCl₃): δ = 0.09 and 0.22 (s, 9 H, 2SiMe₃), 2.07 and 2.12 (s, 3 H, 2 CH₃COO), 3.14 and 3.29 (s, 3 H, 2OMe), 5.54–5.80 (m, 2 H, 2H₂C=), 6.50 and 6.51 (s, 1 H, 2 C*H*-OAc) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 0.9 (m) and 1.0 (m), 50.0 and 50.2, 122.2 (q, *J* = 289.3 Hz) ppm. ¹⁹F (282 MHz, CDCl₃): δ = -82.6 and -82.0 (s, 3 F, CF₃) ppm.

1-Phenyl-2-{2,2,2-trifluoro-1-methyl-1-[(trimethylsilyl)oxy]ethyl}prop-2-en-1-yl Acetate (10): Trifluoromethylation of ketone **5a** was performed according to procedure B, but with stirring at -20 °C for 18 h. The residue was purified by column chromatography (hexane/EtOAc, 20:1). Yield: 173 mg (48%). Mixture of isomers, 1.5:1. Oil. $R_{\rm f} = 0.28$ (hexane/EtOAc, 20:1). ¹H NMR (300 MHz, CDCl₃, major isomer): $\delta = -0.02$ (s, 9 H, SiMe₃), 1.62 (s, 3 H, C-CH₃), 2.07 (s, 3 H, CH₃CO₂), 5.58 (s, 1 H, =CH_AH_B), 5.63 (s, 1 H, =CH_AH_B), 6.65 (CH-OAc), 7.27–7.41 (m, 5 H, CH_{Ar}) ppm. ¹H NMR (300 MHz, CDCl₃, minor isomer): $\delta = 0.17$ (s, 9 H, SiMe₃), 1.60 (s, 3 H, C-CH₃), 2.10 (s, 3 H, CH₃CO₂), 5.48 (s, 1 H, =C H_AH_B), 5.64 (s, 1 H, =C H_AH_B), 6.59 (CH-OAc), 7.27– 7.41 (m, 5 H, C H_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃, major isomer): δ = 1.8, 21.2, 22.6 (q, J = 1.4 Hz), 73.5 (q, J = 1.4 Hz), 77.6 (q, J = 29.2 Hz), 118.8 (q, J = 1.4 Hz), 125.20 (q, J = 287.6 Hz), 127.9, 128.1, 128.4, 139.4, 147.0, 169.4 ppm. ¹³C NMR (75 MHz, CDCl₃, minor isomer): δ = 2.0, 21.3, 23.1 (q, J = 1.4 Hz), 73.2 (q, J = 1.4 Hz), 77.4 (q, J = 29.0 Hz), 119.0 (q, J = 1.6 Hz), 125.22 (q, J = 287.6 Hz), 127.5, 128.0, 128.3, 139.1, 147.4, 169.5 ppm. ¹⁹F (282 MHz, CDCl₃, major isomer): δ = -81.6 (s, 3 F, CF₃) ppm. ¹⁹F (282 MHz, CDCl₃, minor isomer): δ = -80.9 (s, 3 F, CF₃). C₁₇H₂₃F₃O₃Si (360.44): calcd. C 56.65, H 6.43; found C 56.45, H 6.27.

Supporting Information (see footnote on the first page of this article): Synthesis and characterization of starting compounds.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project 10–03–91159), the Russian Academy of Sciences (program #7), and the Federal program "Scientific and Educational Personnel of Innovative Russia" (project 02.740.11.0258).

- a) G. K. S. Prakash, A. K. Yudin, *Chem. Rev.* **1997**, 97, 757–786;
 b) G. K. S. Prakash, M. Mandal, *J. Fluorine Chem.* **2001**, *112*, 123–131;
 c) R. P. Singh, J. M. Shreeve, *Tetrahedron* **2000**, 56, 7613–7632.
- [2] K. Uneyama, J. Fluorine Chem. 2008, 129, 550-576.
- [3] For detailed studies of trifluoromethylation of the C=O bond, see: a) G. K. S. Prakash, C. Panja, H. Vaghoo, V. Surampudi, R. Kultyshev, M. Mandal, G. Rasul, T. Mathew, G. A. Olah, J. Org. Chem. 2006, 71, 6806–6813; b) Y. Kawano, N. Kaneko, T. Mukaiyama, Bull. Chem. Soc. Jpn. 2006, 79, 1133–1145; c) For enantioselective reaction, see: S. Mizuta, N. Shibata, S. Akiti, H. Fujimoto, S. Nakamura, T. Toru, Org. Lett. 2007, 9, 3707–3710.
- [4] For recent examples of trifluoromethylation of the C=N bond, see: a) V. V. Levin, A. D. Dilman, P. A. Belyakov, M. I. Struchkova, V. A. Tartakovsky, *Eur. J. Org. Chem.* 2008, 5226–5230;
 b) A. D. Dilman, D. E. Arkhipov, V. V. Levin, P. A. Belyakov, A. A. Korlyukov, M. I. Struchkova, V. A. Tartakovsky, *J. Org. Chem.* 2008, 73, 5643–5646; c) V. V. Levin, M. A. Kozlov, Y.-H. Song, A. D. Dilman, P. A. Belyakov, M. I. Struchkova, V. A.

Tartakovsky, *Tetrahedron Lett.* **2008**, *49*, 3108–3111; d) G. K. S. Prakash, R. Mogi, G. A. Olah, *Org. Lett.* **2006**, *8*, 3589–3592; e) N. V. Kirij, L. A. Babadzhanova, V. N. Movchun, Y. L. Yag-upolskii, W. Tyrra, D. Naumann, H. T. M. Fischer, H. Scherer, *J. Fluorine Chem.* **2008**, *129*, 14–21; f) for an enantioselective reaction, see: H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata, *Angew. Chem. Int. Ed.* **2009**, *48*, 6324–6327.

- [5] a) R. P. Singh, R. L. Kirchmeier, J. M. Shreeve, Org. Lett. 1999, 1, 1047–1049; b) for attempted Michael addition by complexing the carbonyl group with bulky Lewis acids, see: D. V. Sevenard, V. Y. Sosnovskikh, A. A. Kolomeitsev, M. H. Königsmann, G.-V. Röschenthaler, Tetrahedron Lett. 2003, 44, 7623– 7627.
- [6] A. D. Dilman, V. V. Levin, P. A. Belyakov, M. I. Struchkova, V. A. Tartakovsky, *Tetrahedron Lett.* 2008, 49, 4352–4354.
- [7] A. A. Zemtsov, V. V. Levin, A. D. Dilman, M. I. Struchkova, P. A. Belyakov, V. A. Tartakovsky, *Tetrahedron Lett.* 2009, 50, 2998–3000.
- [8] a) T. Lemek, H. Mayr, J. Org. Chem. 2003, 68, 6880–6886; b)
 O. Kaumanns, H. Mayr, J. Org. Chem. 2008, 73, 2738–2745.
- [9] Compounds A readily react with many nucleophiles, see: a) V.
 Singh, S. Batra, *Tetrahedron* 2008, 64, 4511–4574; b) D. Basavaiah, A. J. Rao, T. Satyanarayana, *Chem. Rev.* 2003, *103*, 811–892; c) J. N. Kim, K. Y. Lee, *Curr. Org. Chem.* 2002, 6, 627–645.
- [10] Notably, Lewis base mediated reactions of substrates A with organosilicon reagents have not been described. The only reported process is the palladium-catalyzed coupling with triethoxysilanes ArSi(OEt)₃, which was performed by using 2 equiv. of the fluoride ion, see: G. W. Kabalka, G. Dong, B. Venkataiah, C. Chen, J. Org. Chem. 2005, 70, 9207–9210.
- [11] A. D. Dilman, V. V. Levin, M. Karni, Y. Apeloig, J. Org. Chem. 2006, 71, 7214–7223.
- [12] I. Ruppert, K. Schlich, W. Volbach, *Tetrahedron Lett.* 1984, 25, 2195–2198.
- [13] A. D. Dilman, D. E. Arkhipov, A. A. Korlyukov, V. P. Ananikov, V. M. Danilenko, V. A. Tartakovsky, J. Organomet. Chem. 2005, 690, 3680–3689.
- [14] The use of $MeSi(C_6F_5)_3$ is quite convenient, as this compound is tolerant of air and moisture and can be readily prepared from the cheap reagents C_6F_5Br and $MeSiCl_3$; see ref.^[13]
- [15] In the ¹H NMR spectra of compounds 4a-f, the chemical shift of CH= of the *E* isomer appears ca. 1 ppm downfield relative to that of the *Z* isomer.

Received: July 26, 2010 Published Online: October 27, 2010