

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 128 (2007) 755-761

www.elsevier.com/locate/fluor

Preparation of 1-aryl-2,2-difluoro enol esters via dehydrosulfonylation of α -(phenylsulfonyl)difluoromethylated benzoates

Laijun Zhang, Ya Li, Jinbo Hu*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Feng-Lin Road, Shanghai 200032, China

> Received 30 January 2007; received in revised form 5 March 2007; accepted 5 March 2007 Available online 12 March 2007

Abstract

1-Aryl-2,2-difluoro enol benzoates **4** has been prepared from α -(phenylsulfonyl)-difluoromethylated benzoates **3**, which can be readily obtained from the reactions between simple aldehydes and PhSO₂CF₂H (or TMSCF₂SO₂Ph). 2,2-Difluoro enol esters **4** are relatively more stable compounds than 2,2-difluoro enol sily ethers, and they promise to act as interesting fluorinated building blocks for further elaborations. © 2007 Elsevier B.V. All rights reserved.

Keywords: 2,2-Difluoro enol benzoate; (Phenylsulfonyl)difluoromethyl; Dehydrosulfonylation

1. Introduction

2,2-Difluoro enol derivatives (such as 2,2-difluoro enol silvl ethers) are important fluorine-containing building blocks for the synthesis of many gem-difluorinated organic compounds [1-5]. Initially, 2,2-difluoro enol silvl ethers were prepared from chlorodifluoromethyl ketones [6] or from acyltrifluoromethylsilane through Brook rearrangement [7,8]. Trifluoroethanol has been widely used as an inexpensive starting material for prepation of 2,2-difluoro enol derivatives [4]. More recently, a novel C-F bond cleavage chemistry with trifluoromethyl compounds has been developed by Unevama and co-workers, which significantly expanded both the preparation and the synthetic applications of 2,2-difluoro enol building blocks [5,9]. However, compared to the 2,2-difluoro enol silvl ethers, 2,2-difluoro enol carboxylic esters are less explored [6,8]. We envision that 2,2-difluoro enol esters can be relatively more stable than 2,2-difluoro enol silyl ethers [10], and such class of compounds can be used as interesting fluorinated building blocks for many applications.

Nucleophilic (phenylsulfonyl)difluoromethylation with $PhSO_2CF_2H$ or $TMSCF_2SO_2Ph$ reagent has increasingly

become a highly useful way to synthesize structurally diverse difluoromethylated and difluoromethylenated compounds [11–13]. α -(Phenysulfonyl)difluoromethylated alcohols 2 can be readily prepared via the reactions between corresponding aldehydes and PhSO₂CF₂H (or TMSCF₂SO₂Ph) [11b,11e,13b]. In this article, we wish to report a facile preparation of 2,2-difluoro enol esters from compounds 3 via a base-mediated dehydrosulfonylation (Scheme 1). Since compounds 3 are derived from 2 via simple benzoylation, this synthetic methodology provides a new practical approach to prepare 2,2-difluoro enol esters 4.

Scheme 1.

^{*} Corresponding author. Tel.: +86 21 54925174; fax: +86 21 64166128. *E-mail address:* jinbohu@mail.sioc.ac.cn (J. Hu).

^{0022-1139/}\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2007.03.004

Scheme 2.

2. Results and discussion

 α -(Phenylsulfonyl)difluoromethylated alcohols were prepared in high yields from aldehydes **1** and PhSO₂CF₂H in the presence of lithium hexamethyldisilazide (LHMDS) according to the previous report (Scheme 2) [12e].

Initially, we observed that under the treatment of *n*-BuLi or LHMDS in THF at room temperature, compounds 2 could not undergo dehydrosulfonylation to give 2,2-difluoro enolates. However, the corresponding benzoate form (**3a**) of alcohol **2a** readily underwent dehydrosulfonylation, and the corresponding 2,2-difluoro enol benzoate **4a** could be obtained (Table 1). After a quick survey of reaction conditions, we found that adding 1.2 equiv. of LHMDS in THF at room temperature was the best conditions for the dehydrosulfonylation (Table 1, entry 3).

A variety of α -(phenylsulfonyl)diffuoromethylated benzoates **3** were prepared from corresponding alcohols **2** in good to excellent isolated yields, following a deprotonation and benzoylation (with benzoyl chloride) sequence (Scheme 3).

By using the optimized reaction conditions (Table 1, entry 3), we then investigated the scope of the LHMDS-mediated dehydrosulfonylation reaction. The results are summarized in Table 2. For most 1-(phenylsulfonyl)difluoromethylated benzoates **3**, the dehydrosulfonylation reactions occurred smoothly to give the corresponding 1-aryl-2,2-difluoro enol

Table 1

Survey of reaction conditions for dehydrosulfonylation

Entry	LHMDS (equiv.)	Temperature (°C)	Time (min)	Yeild (%) ^a
1	1.2	-78	70	Trace
2	2	0	30	54
3	1.2	rt	60	65

^a Isolated yeild.

benzoates **4** in moderate to good yields. The remarkable difference between *para-* and *ortho-*methoxy-substituted substrates in the reaction (entries c and e) indicates that the dehydrosulfonylation reaction is sensitive to the steric hinderance. In the case of alkyl-substituted substrate **3h** (entry h), the reaction was not successful, probably due to the difficulty in deprotonation of **3h** to generate the anionic species (Scheme 4, Eq. (2)).

 α -(Phenylsulfonyl)difluoromethylated alcohol **2a** was chlorinated by phosphorus pentachloride in CHCl₃ at reflux temperature to give chlorinated product **5** in 81% isolated yield (Table 3, entry 3). Thionyl chloride could not chlorinate compound **2a** under similar reaction conditions, which is different from the similar chlorination of α -trifluoromethylated alcohols [14]. Mediated by LHMDS as a base in THF, compound **5** was readily dehydrosulfonylated to give 2-(1-chloro-2,2-difluorovinyl)naphthalene **6** in 54% yield (Scheme 5).

2,2-Difluoro enol benzoates **4** are stable compound at ambient temperature, which can be stored in a refrigerator for several months without any decomposition. Under KOH aqueous solution, compounds **4c** readily undergo hydrolysis to give difluoromethyl ketones **7** in 72% isolated yields (Scheme 6).

(1) LHMDS, -78 °C, THF/HMPA, 30 min CF₂SO₂Ph (2) PhCOCI, -78 °C 2 h 2 3 3a: R = 2-naphthyl (89%) 3b: R = Ph (92%) 3c: R = 4-methoxyphenyl (82%) 3d: R = (E)-PhCH=CH- (77%) 3e: R = 4-dimethylaminophenyl (90%) 3f: R = 2-methoxyphenyl (98%) 3g: R = 4-tert-butylphenyl (90%) 3h: R = 2-furyl (95%) 3i: R = 2-propyl (74%)

Scheme 3.

Table 2 Dehydrosulfonylation of (phenylsulfonyl)difluoromethylated benzoates **3**

$\begin{array}{c} OBz \\ H \\ H \\ CF_2SO_2Ph \\ \hline THF, rt, 1 h \\ \hline F \\ F \end{array}$						
3	4					
Entry	Substrate 3	Product 4	Yield (%) ^a			
a	OBz CF ₂ SO ₂ Ph (3a)	OBz F (4a)	65			
b	CF ₂ SO ₂ Ph (3b)	F (4b)	54			
c	H ₃ CO ^{OBz} CF ₂ SO ₂ Ph (3c)	H ₃ CO F (4c)	74			
d	OBz CF ₂ SO ₂ Ph (3e)	OBz F F (4d)	68			
e	OBz CF_2SO_2Ph OCH_3 (3f)	OBz F OCH ₃ (4e)	25			
f	OBz CF ₂ SO ₂ Ph (3g)	GBz F (4f)	73			
g	CF_2SO_2Ph (3h)	OBz F (4g)	57			
h	CF_2SO_2Ph (3i)	OBz F F (4 h)	0			

^a Isolated yield.

 Table 3

 Chlorination of a-(phenylsulfonyl)difluoromethylated alcohol 2a

	OH CF ₂ SO ₂ Ph	Condi Pyri	tions dine	CI	F_2SO_2Ph
	2a			5	
Entry	Chlorination reagent	Solvent	Temperature (°C)	Time (h)	Yeild (%) ^a
1	SOCI ₂	Toluene	0~5	1	0
			70	2 ∫	Ū
2	SOCI ₂	THF	0~5	1]	0
			66	2 J	
3	PCI ₅	CHCI ₃	60	3	81

^aIsolated yield.

In conclusion, 1-aryl-2,2,-difluoro enol benzoates **4** has been prepared from α -(phenylsulfonyl)difluoromethylated benzoates **3**, which can be readily obtained from the reactions between simple aldehydes and PhSO₂CF₂H (or TMSCF₂SO₂Ph). 2,2-Difluoro enol esters **4** are relatively more stable compounds than 2,2-difluoro enol sily ethers, and they promise to act as interesting fluorinated building blocks for further elaborations.

3. Experimental

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. THF was freshly distilled over sodium. Difluoromethyl phenyl sulfone was prepared using known procedures [11–13]. ¹H NMR spectra were recorded on Bruker 300 or Mercury 300 spectrometers with Me₄Si as internal standard. ¹⁹F NMR spectra were recorded on Bruker 300 or Mercury 300 spectrometers with CFCl₃ as external standard. ¹³C NMR spectra were recorded on Avance 500 or DPX-400 spectrometers. Mass spectra were obtained on a HP5989A spectro-

meter. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI or MALDI mode. Compounds **2** were prepared from aldehydes and PhSO₂CF₂H according to previous report [12e].

3.1. Typical procedure for preparation of compounds 3

Under N₂ atmosphere, into a 25-mL Schlenk flask containing **2b** (3.0 mmol, 0.894 g), HMPA (1.5 mL) in THF (15 mL) at -78 °C, was added dropwise a THF solution (3.40 mL) of (TMS)₂NLi (LHMDS, 1.06 M, 3.60 mmol). The reaction mixture was stirred at this temperature for 30 min, followed by adding BzCl (4.5 mol, 0.632 g) and stirred for another 2 h at this temperature. The reaction mixture was quenched with saturated NH₄Cl aqueous solution, and extracted with ether (3× 25 mL). The combined organic phase was dried over MgSO₄. After the removal of solvents under vacuum, the crude product was purified by silica gel column chromatography to give product **3b** as a white solid (1.110 g), yield: 92%.

3.1.1. 2,2-Difluoro-1-(naphthalen-2-yl)-2-

(phenylsulfonyl)ethyl benzoate (3a)

White solid; mp: 73–75 °C. IR (film): 3059, 1747, 1598, 1585, 1491, 1452, 1247, 1119 cm⁻¹. ¹H NMR: δ 8.13 (d, J = 7.6 Hz, 2H), 8.00 (t, J = 7.6 Hz, 3H), 7.83 (t, J = 8.8 Hz, 3H), 7.70–7.59 (m, 3H), 7.57–7.45 (m, 6H), 6.90 (dd, J = 19.6, 5.3 Hz, 1H). ¹⁹F NMR: δ –104.14 (d, J = 243.1 Hz, 1F), –113.40 (dd, J = 242.2, 19.7 Hz, 1F). ¹³C NMR: δ 164.085, 135.304, 133.900, 133.731, 133.450, 132.845, 130.566, 130.231, 129.280, 128.808, 128.602, 128.561, 128.530, 128.328, 127.707, 127.056, 126.563, 124.985, 120.136 (dd, J = 297.1, 284.2 Hz), 71.841 (dd, J = 30.5, 19.6 Hz), 60.347. MS (MALDI, m/z, %): 475.1 (M^+ + Na), 358.3 (100.00). HRMS (MALDI): calcd. for C₂₅H₁₈F₂O₄SNa (M^+ + Na): 475.0786; Found: 475.0792.

3.1.2. 2,2-Difluoro-1-phenyl-2-(phenylsulfonyl)ethyl benzoate (**3b**)

White solid; mp: 106–108 °C. IR (film): 3068, 2965, 1736, 1601, 1584, 1497, 1267, 1120 cm⁻¹. ¹H NMR: δ 8.10 (d, J = 7.2 Hz, 2H), 7.98 (d, J = 8.1 Hz, 2H), 7.70 (t, J = 8.0 Hz, 1H), 7.61–7.53 (m, J = 8.1 Hz, 5H), 7.47 (t, J = 7.5 Hz, 2H), 7.40–7.38 (q, 3H), 6.74 (dd, J = 19.8, 5.1 Hz, 1H), ¹⁹F NMR: δ –103.95 (dd, J = 243.1, 3.95 Hz, 1F), –113.27 (dd, J = 243.1, 20.6 Hz, 1F). ¹³C NMR: δ 164.024, 135.323, 133.715, 133.477, 131.265, 130.584, 130.213, 129.931, 129.309, 128.795, 128.641, 128.520, 128.489, 119.970 (dd, J = 296.9, 283.6 Hz), 71.593 (dd, J = 30.3, 19.4 Hz). MS (EI, m/z, %): 261 ($M^{+} -$ SO₂Ph, 3.63), 105 (100.00). EA: calcd. for C₂₁H₁₆F₂O₄S: C, 62.68; H, 4.01; Found: C, 62.67; H, 4.20.

3.1.3. 2,2-Difluoro-1-(4-methoxyphenyl)-2-

(phenylsulfonyl)ethyl benzoate (**3c**)

White solid; mp: 81–83 °C. IR (film): 3068, 2841, 1732, 1614, 1585, 1517, 1260, 1136 cm⁻¹. ¹H NMR: δ 8.08 (d, *J* = 7.2 Hz, 2H), 7.97 (d, *J* = 7.9 Hz, 2H), 7.69 (t, *J* = 7.4 Hz,

1H), 7.57 (m, J = 7.9 Hz, 3H), 7.45 (t, J = 8.5 Hz, 4H), 6.89 (d, J = 8.5 Hz, 2H), 6.69 (dd, J = 19.2, 5.7 Hz, 1H), 3.79 (s, 3H). ¹⁹F NMR: δ –104.73 (dd, J = 240.5, 6.2 Hz, 1F), –113.53 (dd, J = 241.1, 17.2 Hz, 1F). ¹³C NMR: δ 164.060, 160.829, 135.257, 133.628, 133.550, 130.541, 130.155, 129.970, 129.269, 128.898, 128.476, 123.192, 120.072 (dd, J = 296.6, 283.7 Hz), 114.112, 71.310 (dd, J = 30.0, 19.4 Hz), 55.253. MS (EI, m/z, %): 291 (M^+ – SO₂Ph, 2.49), 105 (100.00). EA: calcd. for C₂₂H₁₈F₂O₅S: C, 61.10; H, 4.20; Found: C, 61.09; H, 4.19.

3.1.4. (E)-1,1-Difluoro-4-phenyl-1-(phenylsulfonyl)but-3en-2-yl benzoate (**3d**)

IR (film): 3064, 1761, 1601, 1496, 1259, 1063, 697 cm⁻¹. ¹H NMR: δ 8.09 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 7.8 Hz, 2H), 7.71 (t, J = 7.7 Hz, 1H), 7.58 (q, J = 8.3 Hz, 3H), 7.44 (q, J = 7.1 Hz, 4H), 7.32 (m, 3H), 6.97 (d, J = 15.5 Hz, 1H), 6.44 (m, J = 7.7 Hz, 1H), 6.28 (q, J = 8.3 Hz, 1H). ¹⁹F NMR: δ -106.05 (dd, J = 241.1, 8.46, Hz, 1F), -111.07 (dd, J = 241.1, 14.4 Hz, 1F). ¹³C NMR: δ 164.299, 139.154, 135.388, 135.153, 133.658, 133.424, 130.647, 130.167, 129.334, 128.978, 128.886, 128.658, 128.491, 127.139, 117.358, 120.087 (dd, J = 293.6, 286.5 Hz), 71.399 (dd, J = 27.9, 21.6 Hz). MS (MALDI, m/z, %): 451.1 (M^{+} + Na), 451.1 (100.00). HRMS (MALDI): calcd. for C₂₃H₁₈F₂O₄SNa (M^{+} + Na): 451.0786; Found: 451.0795.

3.1.5. 1-(4-(Dimethylamino)phenyl)-2,2-difluoro-2-(phenylsulfonyl)ethyl benzoate (**3e**)

White solid; mp: 115–117 °C. IR (film): 3059, 2962, 1731, 1612, 1583, 1451, 1263, 1119 cm⁻¹. ¹H NMR: δ 8.06 (d, J = 7.3 Hz, 2H), 7.96 (d, J = 7.8 Hz, 2H), 7.67 (t, J = 7.3 Hz, 1H), 7.60–7.50 (m, J = 7.7 Hz, 3H), 7.46–7.37 (q, J = 7.8 Hz, 4H), 6.69–6.60 (m, 3H), 2.94 (s, 6H). ¹⁹F NMR: δ –104.19 (dd, J = 242.2, 7.3 Hz, 1F), -113.02 (dd, J = 241.4, 19.7 Hz, 1F). ¹³C NMR: δ 164.128, 151.386, 135.107, 133.763, 133.441, 130.491, 130.112, 129.667, 129.202, 128.391, 120.332 (dd, J = 296.2, 283.2 Hz), 118.004, 111.850, 71.669 (dd, J = 29.9, 19.2 Hz), 40.141. MS (EI, m/z, %): 446 (M^+ + 1, 2.94), 105 (100.00). EA: calcd. for C₂₃H₂₁F₂NO₄S: C, 62.01; H, 4.75; N, 3.14; Found: C, 61.90; H, 4.91; N, 2.87.

3.1.6. 2,2-Difluoro-1-(2-methoxyphenyl)-2-(phenylsulfonyl)ethyl benzoate (**3***f*)

White solid; mp: 93–95 °C. IR (film): 3071, 2983, 1730, 1601, 1589, 1494, 1341, 1247 cm⁻¹. ¹H NMR: δ 8.08 (d, J = 7.1 Hz, 2H), 8.01 (d, J = 7.7 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.62–7.52 (m, J = 7.5 Hz, 3H), 7.46–7.37 (q, J = 7.5 Hz, 3H), 7.37–7.27 (m, 2H), 6.93 (t, J = 7.5 Hz, 2H). 3.88 (s, 3H). ¹⁹F NMR: δ –104.74 (dd, J = 244.8, 3.4 Hz, 1F), –113.98 (dd, J = 241.7, 20.3 Hz, 1F). ¹³C NMR: δ 163.918, 157.647, 135.154, 133.732, 133.551, 130.985, 130.616, 130.174, 129.225, 129.011, 128.697, 128.466, 120.704, 120.295 (t, J = 284.4 Hz), 120.156, 111.041, 65.339 (dd, J = 32.0, 18.9 Hz), 55.959. MS (MALDI, m/z, %): 455.1 (M^{+} + Na), 455.1 (100.00). HRMS (MALDI): calcd. for C₂₂H₁₈F₂O₅SNa (M^{+} + Na): 455.0735; Found: 455.0742.

3.1.7. 1-(4-tert-Butylphenyl)-2,2-difluoro-2-

(phenylsulfonyl)ethyl benzoate (**3g**)

White solid; mp: 100–102 °C. IR (film): 3064, 2964, 1735, 1601, 1585, 1517, 1265, 1126 cm⁻¹. ¹H NMR: δ 8.08 (d, J = 7.4 Hz, 2H), 7.97 (d, J = 7.4 Hz, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.62–7.50 (m, J = 8.3 Hz, 3H), 7.48–7.43 (m, 4H), 7.38 (d, J = 8.4 Hz, 2H), 6.72 (dd, J = 20.2, 5.4 Hz, 1H). ¹⁹F NMR: δ –103.69 (dd, J = 243.1, 5.1 Hz, 1F), –113.40 (dd, J = 243.1, 18.3 Hz, 1F). ¹³C NMR: δ 164.038, 153.013, 135.227, 133.625, 133.572, 130.533, 130.174, 129.244, 128.883, 128.467, 128.222, 128.175, 125.593, 120.057 (dd, J = 296.7, 283.3 Hz), 71.409 (dd, J = 30.7, 19.2 Hz), 34.673, 31.169. MS (EI, *m*/*z*, %): 317 (*M*⁺ – SO₂Ph, 1.49), 105 (100.00). EA: calcd. for C₂₅H₂₄F₂O₄S: C, 65.49; H, 5.28; Found: C, 65.32; H, 5.60.

3.1.8. 2,2-Difluoro-1-(furan-2-yl)-2-(phenylsulfonyl)ethyl benzoate (**3h**)

White solid; mp: 91–93 °C. IR (film): 3066, 1739, 1600, 1585, 1502, 1452, 1349, 1249 cm⁻¹. ¹H NMR: δ 8.06 (d, J = 8.8 Hz, 2H), 7.98 (d, J = 8.8 Hz, 2H), 7.68 (t, J = 7.6 Hz, 1H), 7.58 (q, J = 7.6 Hz, 3H), 7.45 (t, J = 7.6 Hz, 3H), 6.90 (dd, J = 17.0, 7.6 Hz, 1H). 6.68 (d, J = 3.8 Hz, 1H), 6.41 (m, 1H). ¹⁹F NMR: δ –105.70 (dd, J = 240.3, 6.7 Hz, 1F), –111.14 (dd, J = 240.8, 16.6 Hz, 1F). ¹³C NMR: δ 164.061, 144.401, 135.451, 133.795, 133.166, 130.651, 130.271, 129.364, 128.500, 119.442 (t, J = 296.9 Hz), 113.019, 110.834, 65.172 (dd, J = 28.8, 20.6 Hz). MS (EI, m/z, %): 251 (M^+ – SO₂Ph, 1.17), 105 (100.00). EA: calcd. for C₁₉H₁₄F₂O₅S: C, 58.16; H, 3.60; Found: C, 58.11; H, 3.55.

3.1.9. 1,1-Difluoro-3-methyl-1-(phenylsulfonyl)butan-2-yl benzoate (**3i**)

White solid; mp: 78–80 °C. IR (film): 3069, 2970, 1741, 1602, 1582, 1492, 1340, 1259 cm⁻¹. ¹H NMR: δ 8.09 (d, J = 7.2 Hz, 2H), 7.97 (d, J = 7.5 Hz, 2H), 7.70 (t, J = 7.2 Hz, 1H), 7.63–7.53 (m, 3H), 7.46 (t, J = 8.0 Hz, 2H), 5.93 (ddd, J = 18.1, 8.4, 4.2 Hz, 1H), 2.53 (m, 1H), 1.09 (t, J = 7.2 Hz, 6H). ¹⁹F NMR: δ –105.38 (dd, J = 241.4, 7.9 Hz, 1F), –108.70 (dd, J = 241.7, 17.5 Hz, 1F). ¹³C NMR: δ 164.932, 135.306, 133.530, 133.143, 130.690, 130.145, 129.254, 128.961, 128.467, 121.097 (t, J = 294.8 Hz), 71.991 (dd, J = 25.7, 19 Hz), 28.850, 19.784, 16.871. MS (MALDI, m/z, %): 391.1 (M^+ + Na), 391.1 (100.00). HRMS (MALDI): calcd. for C₁₈H₁₈F₂O₄SNa (M^+ + Na): 391.0786; Found: 391.0796.

3.2. Typical procedure for preparation of compounds 4

Under N₂ atmosphere, into a 25 mL Schlenk flask containing **3b** (2.5 mmol, 1.005 g) in 10 mL of THF at room temperature, was added dropwise a THF solution (2.83 mL) of (TMS)₂NLi (LHMDS, 1.06 M, 3.0 mmol). The reaction mixture was stirred for 1 h and quenched with saturated NH₄Cl aqueous solution, and extracted with ether (3×25 mL). The combined organic phase was dried over MgSO₄. After the removal of solvents under vacuum, the crude product was purified by silica gel

column chromatography to give product 4b as a white solid (0.353 g), yield: 54%.

3.2.1. 2,2-Difluoro-1-(naphthalene-2-yl)vinyl benzoate (4a)

IR (film): 3065, 1733, 1602, 1585, 1511, 1450, 1350, 1262 cm⁻¹. ¹H NMR: δ 8.17 (d, J = 7.8 Hz, 2H), 7.84–7.72 (m, 4H), 7.62 (t, J = 7.9 Hz, 1H), 7.55–7.40 (m, 5H). ¹⁹F NMR: δ –91.99 (d, J = 46.8 Hz, 1F), –102.98 (d, J = 48.2 Hz, 1F). ¹³C NMR: δ 163.883, 154.567 (t, J = 289.7 Hz), 134.078, 133.034, 132.974, 130.410, 128.773, 128.533, 128.434, 128.286, 127.648, 126.746, 126.609, 125.062 (t, J = 5.2 Hz), 122.840, 122.794, 122.772. MS (EI, m/z, %): 310 (M⁺, 5.95), 105 (100.00). EA: calcd. for C₁₉H₁₂F₂O₂: C,73.54; H, 3.90; Found: C,73.29; H, 4.04.

3.2.2. 2,2-Difluoro-1-phenylvinyl benzoate (4b)

White solid; mp: 18–20 °C. IR (film): 3065, 1749, 1601, 1585, 1500, 1452, 1259, 1135 cm⁻¹. ¹H NMR: δ 8.20 (d, J = 6.9 Hz, 2H), 7.65 (t, J = 7.3 Hz, 1H), 7.54–7.46 (q, J = 8.2 Hz, 4H), 7.41–7.30 (m, J = 6.9 Hz, 3H). ¹⁹F NMR: δ –92.55 (d, J = 47.4 Hz, 1F), –103.18 (d, J = 47.6 Hz, 1F). ¹³C NMR: δ 163.817, 154.361 (t, J = 289.0 Hz), 134.036, 130.356, 128.881, 128.830, 128.733, 128.680, 128.466, 128.407, 125.520 (dd. J = 6.3, 4.0 Hz). MS (EI, m/z, %): 260 (M^+ , 0.99), 105 (100.00). HRMS (EI): calcd. for C₁₅H₁₀F₂O₂: 260.0649; Found: 260.0639.

3.2.3. 2,2-Difluoro-1-(4-methoxyphenyl)vinyl benzoate (4c)

White solid; mp: 44–45 °C. IR (film): 3004, 2844, 1742, 1610, 1574, 1516, 1260, 1114 cm⁻¹. ¹H NMR: δ 8.19 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 3.81 (s, 3H). ¹⁹F NMR: δ –94.28 (d, J = 52.7 Hz, 1F), -104.89 (d, J = 52.5 Hz, 1F). ¹³C NMR: δ 163.874, 159.674, 153.993 (dd. J = 288.7, 286.8 Hz), 133.966, 130.321, 128.701, 128.516, 127.144 (dd. J = 6.1, 4.0 Hz), 121.674, 121.611, 114.196, 55.286. MS (EI, m/z, %): 290 (M^+ , 2.58), 105 (100.00). EA: calcd. for C₁₆H₁₂F₂O₃: C, 66.21; H, 4.17; Found: C, 65.95; H, 4.50.

3.2.4. 1-(4-(Dimethylamino)phenyl)-2,2-difluorovinyl benzoate (4d)

White solid; mp: 108–109 °C. IR (film): 3068, 2897, 1744, 1618, 1584, 1529, 1280, 1115 cm⁻¹. ¹H NMR: δ 8.18 (d, J = 8.4 Hz, 2H), 7.65 (t, J = 7.8 Hz, 1H), 7.51 (t, J = 7.9 Hz, 2H), 7.33 (d, J = 9.0 Hz, 2H), 6.69 (d, J = 9.0 Hz, 2H), 2.96 (s, 6H). ¹⁹F NMR: δ –95.92 (d, J = 56.4 Hz, 1F), -106.48 (d, J = 57.2 Hz, 1F). ¹³C NMR: δ 163.954, 153.780 (dd, J = 287.5, 285.4 Hz), 150.315, 133.797, 130.298, 128.638, 126.821, 126.786, 126.768, 126.727, 112.127, 40.228. MS (EI, m/z, %): 303 (M^+ , 13.78), 105 (100.00). EA: calcd. for C₁₇H₁₅F₂NO₂: C, 67.32; H, 4.98; N, 4.62; Found: C, 67.21; H, 5.20; N, 4.41.

3.2.5. 2,2-Difluoro-1-(2-methoxyphenyl)vinyl benzoate (4e)

IR (film): 3066, 2941,1748, 1602, 1583, 0496, 1249, 1126 cm⁻¹. ¹H NMR: δ 8.12 (d, J = 7.8 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.49–7.42 (q, J = 7.4 Hz, 3H), 7.36 (t, J = 8.2 Hz, 1H), 7.00–6.91 (q, J = 8.5 Hz, 2H), 3.82 (s, 3H). ¹⁹F NMR: δ –94.19 (d, J = 48.2 Hz, 1F), -103.62 (d, J = 48.2 Hz, 1F). ¹³C NMR: δ 163.871, 157.550, 154.00 (dd, J = 289.4, 283.1 Hz), 133.603, 131.007, 130.806, 130.221, 128.966, 128.510, 120. 487, 111.377, 55.713. MS (EI, m/z, %): 290 (M^+ , 2.33), 105 (100.00). HRMS (EI): calcd. for C₁₆H₁₂F₂O₃: 290.0755; Found: 290.0764.

3.2.6. 1-(4-tert-Butylphenyl)-2,2-difluorovinyl benzoate (4f)

White solid; mp: 40–41 °C. IR (film): 2972, 1751, 1601, 1585, 1492, 1278, 1138 cm⁻¹. ¹H NMR: δ 8.19 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.1 Hz, 1H), 7.52 (t, J = 7.5 Hz, 2H), 7.40 (s, 4H), 1.30 (s, 9H). ¹⁹F NMR: δ –92.95 (d, J = 49.4 Hz, 1F), -103.47 (d, J = 49.4 Hz, 1F). ¹³C NMR: δ 163.867, 157.174, 154.283, 151.621, 133.970, 130.343, 128.709, 128.509, 126.405, 125.649, 125.279 (dd, J = 6.1, 3.3 Hz), 34.641, 31.162. MS (EI, m/z, %): 316 (M^+ , 2.36), 105 (100.00). HRMS (EI): calcd. for C₁₉H₁₈F₂O₂: 316.1275; Found: 316.1286.

3.2.7. 2,2-Difluoro-1-(furan-2-yl)vinyl benzoate (4g)

IR (film): 3068, 1751, 1602, 1585, 1494, 1454, 1271 cm⁻¹. ¹H NMR: δ 8.18 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 6.8 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.44 (s, 1H), 6.45 (s, 2H). ¹⁹F NMR: δ -94.44 (d, J = 43.7 Hz, 1F), -100.39 (d, J = 43.7 Hz, 1F). ³C NMR: δ 171.743, 149.399, 134.885, 133.827, 130.505, 130.198, 130.039, 128.840, 128.594, 128.481, 123.192 (t, J = 4.1 Hz), 112.965, 110.865. MS (EI, m/z, %): 250 (M^+ , 1.84), 105 (100.00). HRMS (EI): calcd. for C₁₃H₈F₂O₃: 250.0442; Found: 250.0448.

3.3. Preparation of compound 5

Under N₂ atmosphere, into a 50-mL Schlenk flask containing **2a** (2.0 mmol, 0.696 g), CHCl₃ (30 mL), PCl₅ (6.0 mmol, 1.252 g) at room temperature, was added dropwise pyridine (12.0 mmol, 0.936 g). The reaction mixture was heated at reflux temperature for 3 h. After quenched with ice-water, the reaction mixture was extracted with CHCl₃ (3×30 mL), and the combined organic phase was dried over anhydrous MgSO₄. The volatile solvents were removed under vacuum, and the crude product was purified by silica gel column chromatography to give product **5** as a white solid (0.592 g), yield: 81%.

3.3.1. 2-(1-Chloro-2,2-difluoro-2-

(phenylsulfonyl)ethyl)naphthalene (5)

White solid; mp: 136–138 °C. IR (film): 3064, 1581, 1509, 1449, 1340, 1157, 1108 cm⁻¹. ¹H NMR: δ 7.98 (s, 1H), 7.83 (d, J = 8.2 Hz, 5H), 7.68–7.44 (m, 6H), 5.78 (dd, J = 15.7, 10.4 Hz, 1H). ¹⁹F NMR: δ –102.22 (dd, J = 230.7, 10.2 Hz, 1F), –105.90 (dd, J = 232.1, 16.1 Hz, 1F). ¹³C NMR: δ 135.310, 133.899, 133.256, 132.694, 130.565, 129.864, 129.379,

129.127, 128.776, 128.416, 127.724, 127.422, 126.757, 125.607, 120.179 (t, J = 292.9 Hz), 57.830 (t, J = 21.9 Hz). MS (EI, m/z, %): 366 (M^+ , 3.28), 190 (100.00). HRMS (EI): calcd. for C₁₈H₁₃F₂O₂ClS: 366.0293; Found: 366.0306.

3.4. Preparation of compound 6

Under N₂ atmosphere, into a 25-mL Schlenk flask containing **5** (1.5 mmol, 0.549 g) in 15 mL of THF at room temperature, was added dropwise a THF solution (1.70 mL) of (TMS)₂NLi (LHMDS, 1.06 M, 1.8 mmol). The reaction mixture was stirred for 1 h and quenched with saturated NH₄Cl aqueous solution, and extracted with ether (3×25 mL). The combined organic phase was dried over MgSO₄. After the removal of solvents under vacuum, the crude product was purified by silica gel column chromatography to give product **6** as a white solid (0.182 g), yield: 54%.

3.4.1. 2-(1-Chloro-2,2-difluorovinyl)naphthalene (6)

White solid; mp: 42–44 °C. IR (film): 3061, 2925, 1718, 1627, 1296, 1274, 1193, 1006 cm⁻¹. ¹H NMR: δ 8.00 (s, 1H), 7.84 (m, 3H), 7.61 (d, J = 8.7 Hz, 1H), 7.55–7.49 (m, J = 3.1 Hz, 2H). ¹⁹F NMR: δ –82.74 (d, J = 31.3 Hz, 1F), -88.52 (d, J = 32.7 Hz, 1F). ¹³C NMR: δ 157.079, 154.173, 151.290, 133.070, 132.870, 128.303, 127.641, 127.045, 126.736, 124.824, 124.669 (dd. J = 5.2, 2.2 Hz), 121.026. MS (EI, m/z, %): 224 (M^+ , 97.95), 44 (100.00). HRMS (EI): calcd. for C₁₂H₇ClF₂: 224.0204; Found: 224.0196.

3.5. Typical procedure for the hydrolysis of compound 4

Into a 10-mL Schlenk flask containing **4c** (0.2 mmol, 0.058 g), THF (2 mL), H₂O (2 mL) at room temperature, was added KOH (0.3 mmol, 0.017 g). The reaction mixture was stirred for 12 h, and extracted with ether (3×25 mL). The combined organic phase was dried over MgSO₄. After the removal of solvents under vacuum, the crude product was purified by silica gel column chromatography to give product **7** as a colorless liquid (0.027 g), yield: 72%.

3.5.1. 2,2-Difluoro-1-(4-methoxyphenyl)ethanone (7)

¹H NMR: δ 7.99 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.19 (t, J = 53.7 Hz, 1H), 3.83 (s, 3H). ¹⁹F NMR: δ –121.8 (d, J = 51.8 Hz). The characterization data was consistent with the previous report [15].

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (20502029), Shanghai Rising-Star Program (06QA14063), and the Chinese Academy of Sciences (Hundreds-Talent Program) for financial support.

References

- [1] P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.
- [2] K. Uneyama, Organofluorine Chemistry, Blackwell, New Delhi, 2006.
- [3] M.J. Tozer, T.F. Herpin, Tetrahedron 52 (1996) 8619-8683.
- [4] J.M. Percy, Top. Curr. Chem. 193 (1997) 131-195.
- [5] H. Amii, K. Uneyama, Mg-promoted selective C-F bond cleavage: a general and efficient access to diffuoroenol silyl ethers and their derivatives, in: V.A. Soloshonok (Ed.), Fluorine-containing Synthons, ACS Symposium Series 911, American Chemical Society, 2005.
- [6] M. Yamada, T. Ishihara, T. Ando, Tetrahedron Lett. 24 (1983) 507-510.
- [7] F. Jin, Y. Xu, W. Huang, J. Chem. Soc. Perkin Trans. I (1993) 795–799.
 [8] T. Brigaud, P. Doussot, C. Portella, J. Chem. Soc. Chem. Commun. (1994) 2117–2118.
- [9] H. Amii, T. Kobayashi, Y. Hatamoto, K. Uneyama, Chem. Commun. (1999) 1323–1324.
- [10] We found that 2,2-difluoro enol benzoate 4b can be conveniently purified by silica gel column chromatography at room temperature without decomposition, but with the same procedure 1-phenyl-2,2-difluoro enol silyl ether were readily hydrolyzed to give 2,2-difluoroacetophenone. Furthermore, we found that 2,2-difluoro enol benzoate 4b was stable even after stirring with 1N hydrochloric acid at room temperature for 10 h, while the same treatment of 1-phenyl-2,2-difluoro enol silyl ether resulted in a full hydrolysis.
- [11] (a) J.A. Edwards, E.M. Obukhova, V.V. Prezhdo, U.S. Patent 3,705,182 (1972).
 - (b) G.P. Stahly, J. Fluorine Chem. 43 (1989) 53-66;
 - (c) J.S. Sabol, J.R. McCarthy, Tetrahedron Lett. 33 (1992) 3101–3104;
 (d) D.L. Boger, T.J. Jenkins, J. Am. Chem. Soc. 118 (1996) 8860–8870;
 - (e) P.J. Serafinowski, C.L. Barnes, Synthesis (1997) 225–228;
 - (f) J.-D. Ye, X. Liao, J.A. Piccirilli, J. Org. Chem. 44 (2005) 5882–5886;
 (g) V. Reutrakul, T. Thongpaisanwong, P. Tuchinda, C. Kuhakarn, M. Pohmakotr, J. Org. Chem. 69 (2004) 6913–6915.
- [12] (a) G.K.S. Prakash, J. Hu, G.A. Olah, J. Org. Chem. 68 (2003) 4457– 4463;
 - (b) G.K.S. Prakash, J. Hu, T. Mathew, G.A. Olah, Angew. Chem. Int. Ed. 42 (2003) 5216–5219;
 - (c) G.K.S. Prakash, J. Hu, Y. Wang, G.A. Olah, Org. Lett. 6 (2004) 4315–4317;
 - (d) G.K.S. Prakash, J. Hu, Y. Wang, G.A. Olah, Angew. Chem. Int. Ed. 43 (2004) 5203–5206;
 - (e) G.K.S. Prakash, J. Hu, Y. Wang, G.A. Olah, Eur. J. Org. Chem. (2005) 2218–2223;

(f) G.K.S. Prakash, Y. Wang, J. Hu, G.A. Olah, J. Fluorine Chem. 126 (2005) 1361–1367;

(g) G.K.S. Prakash, J. Hu, Y. Wang, G.A. Olah, J. Fluorine Chem. 126 (2005) 529–534.

- [13] (a) Y. Li, J. Hu, Angew. Chem. Int. Ed. 44 (2005) 5882–5886;
 (b) C. Ni, J. Hu, Tetrahedron Lett. 46 (2005) 8273–8277;
 (c) J. Liu, C. Ni, Y. Li, L. Zhang, G. Wang, J. Hu, Tetrahedron Lett. 47 (2006) 6753–6756;
 (d) C. Ni, Y. Li, J. Hu, J. Org. Chem. 71 (2006) 6829–6833;
 (e) C. Ni, J. Liu, L. Zhang, J. Hu, Angew. Chem. Int. Ed. 46 (2007) 786–789.
- [14] R. Anilkumar, D.J. Burton, J. Fluorine Chem. 126 (2005) 1174-1184.
- [15] W. Ying, D.D. DesMarteau, Y. Gotoh, Tetrahedron 52 (1996) 15-22.