

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 126 (2005) 529-534

www.elsevier.com/locate/fluor

Fluoride-induced nucleophilic (phenylthio)difluoromethylation of carbonyl compounds with [difluoro(phenylthio)methyl]trimethylsilane (TMS-CF₂SPh)

G.K. Surya Prakash*, Jinbo Hu, Ying Wang, George A. Olah

Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661, USA

Received 7 December 2004; accepted 9 December 2004 Available online 12 January 2005

Dedicated to Professor Richard D. Chambers on the occasion of his 70th birthday.

Abstract

A fluoride-induced nucleophilic (phenylthio)difluoromethylation method using $TMS-CF_2SPh$ has been achieved. This new methodology efficiently transfers "PhSCF₂" group into both enolizable and non-enolizable aldehydes and ketones to give corresponding (phenylthio)difluoromethylated alcohols in good to excellent yields. Diphenyldisulfide can also be (phenylthio)difluoromethylated into PhSCF₂SPh in high yield. The reaction with methyl benzoate, however, gives only low yield of (phenylthio)difluoromethyl phenyl ketone. The above-obtained PhSCF₂-containing alcohols can be further transformed into difluoromethyl alcohols using an oxidation–desulfonylation procedure. This new type of nucleophilic (phenylthio)difluoromethylation methodology may have other potential applications in the medicinal and agrochemical fields.

© 2004 Elsevier B.V. All rights reserved.

Keywords: [Difluoro(phenylthio)methyl]trimethylsilane; (Phenylthio)difluoromethylation; Carbonyl compounds; Fluoride; Autocatalytic reaction

1. Introduction

Recently, the selective introduction of difluoro(arylthio)methyl or difluoro(heteroarylthio)methyl group (ArSCF₂) into organic molecules has been found to be attractive, since these compounds have potential biological applications such as anti-HIV-1 reverse transcriptase inhibitors and other agrochemical intermediates [1,2]. The currently known methods to construct the ArSCF₂ moiety are based on the S_RN1 reactions between an aryl- or heteroarylthiolate (ArSNa) and a halodifluoromethyl-containing compound (halo = Br, Cl) [1,2]. To our best knowledge, there is no synthetic method available so far for the direct introduction of a difluoro(arylthio)methyl (ArSCF₂) building block into organic molecules.

* Corresponding author. Tel.: +1 213 740 5984;

fax: +1 213 740 6270/6679.

E-mail address: gprakash@usc.edu (G.K. Surya Prakash).

In 1989, we developed the first general and efficient nucleophilic trifluoromethylation method using (trifluoromethyl)trimethylsilane (TMS–CF₃) [3–5]. With a similar protocol, fluoride-induced nucleophilic chlorodifluoromethylation with TMS–CF₂Cl, (trimethylsilyl)difluoromethylation with TMS–CF₂TMS, and perfluorovinylation with TMS CF₂CF₂TMS have been developed in our laboratory [6]. Herein, we would like to disclose another nucleophilic fluoroalkylation methodology in this category, using [difluoro(phenylthio)methyl]trimethylsilane (TMS–CF₂S-Ph) as the nucleophilic (phenylthio)difluoromethylating reagent.

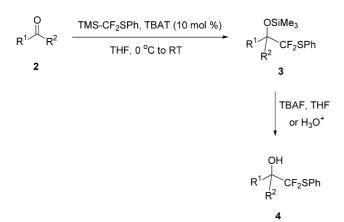
2. Results and discussion

[Difluoro(phenylthio)methyl]trimethylsilane (TMS– CF_2 SPh) was prepared for the first time by us as a high-boiling and reasonably stable liquid (b.p. 86–87 °C/4 mmHg), using

^{0022-1139/\$ –} see front matter \odot 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2004.12.005

 $CF_2Br_2 + PhSNa \xrightarrow{dibenzo-18-crown-6} PhSCF_2Br \xrightarrow{Me_3SiCl, Mg} TMS-CF_2SPh$ Et₂O DMF TMS-CF₂SPh

Scheme 1. Preparation of TMS-CF₂SPh.

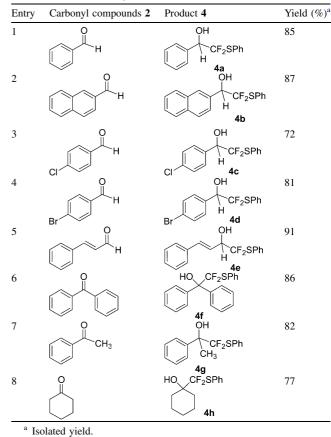

the Barbier coupling reaction of bromodifluoromethyl phenyl sulfide (1), magnesium metal and chlorotrimethylsilane (TMSCl) in 85% isolated yield (Scheme 1) [7]. Since compound 1 can be readily prepared from dibromodifluoromethane (Halon 1202) and sodium benzenethiolate [8], TMS–CF₂SPh is an inexpensive chemical and can be widely used.

The reaction conditions for the fluoride-induced nucleophilic (phenylthio)difluoromethylation reaction (Scheme 2) is similar to that of trifluoromethylation with TMS–CF₃ [3,4]. Catalytic amount (10 mol.%) of tetrabutylammonium triphenyldifluorosilicate (TBAT) was used as the anhydrous fluoride source. The results are summarized in Table 1.

As shown in Table 1, various aldehydes and ketones were (phenylthio)difluoromethylated in good to excellent yields with this method. Enolizable carbonyl compounds behave similarly as non-enolizable ones, with slightly lower yields (see entries 7 and 8). In the case of an α , β -unsaturated carbonyl compound, only 1,2-addition product was obtained (entry 5).

This new type of (phenylthio)difluoromethylation method was also applied to other systems such as disulfides and esters. For example, when excess potassium *tert*-butoxide was used as the promoter, diphenyl disulfide (**5**) reacted with TMS–CF₂SPh to give product **6** in 85% yield (Scheme 3, Eq. (1)). The reaction between methyl benzoate (**7**) and TMS–CF₂SPh was attempted several times using different solvents at -78 °C to room temperature, and the ketone product **8** was produced in 28–41% conversions (Scheme 3, Eq. (2)).

The above-obtained (phenylthio)difluoromethyl carbinols (4) can also be further transformed into difluoromethyl carbinols (10), using simple oxidation and reductive


Scheme 2. Nucleophilic (phenylthio)difluoromethylation with TMS– CF_2SPh .

desulfonylation procedure (Scheme 4). Difluoromethyl alcohols are highly useful compounds for many applications [9].

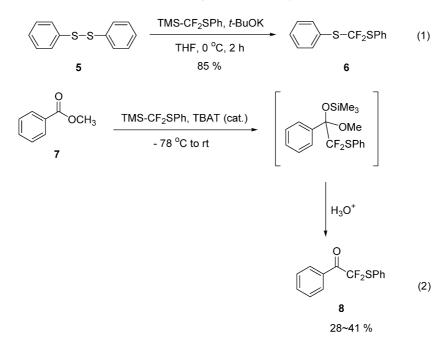
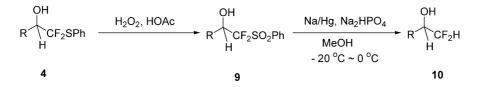
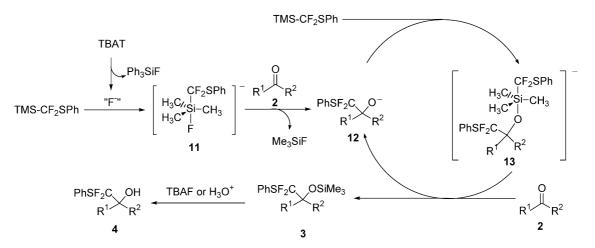

Concerning the mechanism of this fluoride-induced (phenylthio)difluoromethylation of carbonyl compounds (both aldehydes and ketones), we propose that a pentacovalent silicon anion species **11** is formed from TMS– CF₂SPh and TBAT (Scheme 5). Species **11** acts as a real (phenylthio)difluoromethylating agent, transferring the PhSCF₂⁻ into the carbonyl compound **2** to give alkoxide **12**. Alkoxide **12** can further act as an initiator for TMS– CF₂SPh to form another pentacovalent silicon species **13** as a (phenylthio)difluoromethylating agent, thus giving the silylated carbinol product **3** from TMS–CF₂SPh and carbonyl compounds **2** in a catalytic cycle (Scheme 5). In principle, the reaction is a fluoride-induced autocatalytic process, and such a mechanism has been previously proposed by us in the case of TMS–CF₃ [3].

Table 1


Nucleophilic (phenylthio)difluoromethylation of carbonyl compounds with TMS-CF₂SPh (after desilylation)

530



Scheme 3. (Phenylthio)difluoromethylation of diphenyl disulfide and methyl benzoate.

For two steps: R = Ph, 49 % (**10a**) R = 2-naphthyl, 53 % (**10b**)

Scheme 5. Proposed mechanism of the (phenylthio)difluoromethylation of carbonyl compounds with TMS-CF₂SPh.

3. Conclusion

In conclusion, a fluoride-induced nucleophilic (phenylthio)difluoromethylation method using $TMS-CF_2SPh$ has been achieved. This new methodology efficiently transfers $PhSCF_2$ group into both enolizable and nonenolizable aldehydes and ketones to give the corresponding (phenylthio)difluoromethylated carbinols in good to excellent yields. Diphenyldisulfide can also be (phenylthio)difluoromethylated into $PhSCF_2SPh$ in high yield. The reaction with methyl benzoate, however, gives only low yield of (phenylthio)difluoromethyl phenyl ketone. The above-obtained PhSCF₂-containing alcohols can be further transformed into difluoromethyl alcohols using oxidation–desulfonylation procedure. This nucleophilic fluoroalkylation chemistry can also be extended to other (arylthio)-difluoromethylation, (heteroarylthio)difluoromethylation and (alkylthio)difluoromethylation using corresponding TMS–CF₂SR reagents, which are still under investigation in our laboratory.

4. Experimental

4.1. General

Unless otherwise mentioned, all reagents were purchased from commercial sources. TMS–CF₂SPh was prepared according to our previous procedures [7]. THF was distilled under nitrogen over sodium/benzophenone ketyl prior to use. Toluene was distilled over sodium. Column chromatography was carried out using silica gel (60–200 mesh).

¹H, ¹³C, ¹⁹F NMR spectra were recorded on Bruker AMX 500 and Varian Mercury-400 NMR spectrometers. $(CH_3)_4Si$ (TMS) was used as an internal standard for ¹H and ¹³C NMR, CFCl₃ was used as internal standard for ¹⁹F NMR. For some cases, CDCl₃ was used as the internal standard for ¹H NMR (7.26 ppm) and ¹³C NMR (77 ppm). Mass spectra were obtained on a Hewlett Packard 5890 Gas Chromatograph equipped with a Hewlett Packard 5971 Mass Selective Detector at 70 eV. HRMS data were recorded on a VG 7070 high-resolution mass spectrometer. The purity of the isolated products (usually >97% purity) was examined by GC–MS and ¹H, ¹³C, ¹⁹F NMR spectroscopy.

4.2. Typical procedures for the nucleophilic (phenylthio)difluoromethylation with TMS-CF₂SPh

Under an argon atmosphere, into a Schlenk flask containing benzaldehyde (106 mg, 1.0 mmol) and TMS–CF₂SPh (278 mg, 1.2 mmol) in dry THF (5 mL) at 0 °C, was added dropwise a THF solution (3 mL) of TBAT (54 mg, 0.1 mmol). Then the reaction mixture was stirred at 0 °C for 1 h, followed by stirring at room temperature overnight. A wet THF solution (10 mL, containing 10% of water) of TBAF·3H₂O (315 mg, 1 mmol) was then added and the whole mixture was stirred for another 30 min. The THF solvent was removed under vacuum, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate (v/v) = 9:1, then 7:1) to give the 2,2-difluoro-2-phenylthio-1-phenylethanol (**4a**) as a colorless liquid, yield: 226 mg (85%).

4.2.1. 2,2-Difluoro-2-phenylthio-1-phenylethanol (4a)

Colorless liquid, 85 % yield. ¹H NMR (CDCl₃): δ 2.71 (d, ³ J_{H-H} = 4 Hz, 1H, O<u>H</u>), 4.92 (m, 1H, CF₂-C<u>H</u>), 7.21-7.51 (m, 10H, <u>Ph</u>). ¹³C NMR (CDCl₃): δ 76.0 (t, ² J_{C-F} = 28 Hz, CF₂<u>C</u>H), 125.7 (t, ³ J_{C-F} = 2.6 Hz, Ph), 127.7 (Ph), 128.3 (Ph), 128.8 (t, ¹ J_{C-F} = 285 Hz, <u>C</u>F₂), 128.9 (Ph), 129.0 (Ph), 129.8 (Ph), 135.2 (Ph), 136.4 (Ph). ¹⁹F NMR (CDCl₃): δ -81.7 (dd, ² J_{F-F} = 210 Hz, ³ J_{F-H} = 8.2 Hz, 1F), -85.2 (dd, ² J_{F-F} = 210 Hz, ³ J_{F-H} = 12 Hz, 1F). MS: 266 [*M*⁺], 160, 107, 77. HRMS (EI): *m/z* calcd for C₁₄H₁₂F₂OS [*M*⁺] 266.0577, found 266.0575.

4.2.2. 2,2-Difluoro-2-phenylthio-1-(2-naphthyl)ethanol (4b)

Pale yellow solid, 87% yield. ¹H NMR (CDCl₃): δ 3.01 (d, ³*J*_{H-H} = 3.5 Hz, 1H, O<u>H</u>), 5.20 (m, 1H, CF₂–C<u>H</u>), 7.28–8.00 (m, 12H, aryl). ¹³C NMR (CDCl₃): δ 76.0 (t, ²*J*_{C-F} = 27 Hz, CF₂<u>C</u>H), 124.9 (t, ³*J*_{C-F} = 1.4 Hz, aryl), 125.8 (t, ³*J*_{C-F} = 2.3 Hz, aryl), 126.2 (aryl), 126.5 (aryl), 127.5 (aryl), 127.6 (aryl), 128.0 (aryl), 128.2 (aryl), 129.0 (aryl), 129.0 (t, ¹*J*_{C-F} = 264 Hz, <u>C</u>F₂), 129.8 (aryl), 132.6 (aryl), 132.8 (aryl), 133.5 (aryl), 136.4 (aryl). ¹⁹F NMR (CDCl₃): δ –81.3 (dd, ²*J*_{F-F} = 210 Hz, ³*J*_{F-H} = 8 Hz, 1F), -84.6 (dd, ²*J*_{F-F} = 210 Hz, ³*J*_{F-H} = 12 Hz, 1F). MS: 316 [*M*⁺], 187, 157, 129, 77. HRMS (EI): *m*/*z* calcd for C₁₈H₁₄F₂OS [*M*⁺] 316.0733, found 316.0730.

4.2.3. 2,2-Difluoro-2-phenylthio-1-(4'chlorophenyl)ethanol (4c)

White solid, 72% yield. ¹H NMR (CDCl₃): δ 3.08 (d, ³ J_{H-H} = 4.2 Hz, 1H, O<u>H</u>), 4.97 (m, 1H, CF₂–C<u>H</u>), 7.35–7.60 (m, 9H, aryl). ¹³C NMR (CDCl₃): δ 75.4 (t, ² J_{C-F} = 27.3 Hz, CF₂<u>C</u>H), 125.5 (t, ³ J_{C-F} = 2.2 Hz, aryl), 128.5 (aryl), 128.7 (t, ¹ J_{C-F} = 285 Hz, CF₂), 129.1 (aryl), 129.2 (aryl), 130.0 (aryl), 133.6 (aryl), 135.0 (aryl), 136.4 (aryl). ¹⁹F NMR (CDCl₃): δ –81.4 (dd, ² J_{F-F} = 210 Hz, ³ J_{F-H} = 7.2 Hz, 1F), -85.2 (dd, ² J_{F-F} = 210 Hz, ³ J_{F-H} = 11.5 Hz, 1F). HRMS (EI): *m*/*z* calcd for C₁₄H₁₁ClF₂OS [*M*⁺] 300.0187, found 300.0179.

4.2.4. 2,2-Difluoro-2-phenylthio-1-(4'bromophenyl)ethanol (4d)

Pale yellow solid, 81% yield. ¹H NMR (CDCl₃): δ 2.84 (d, ³*J*_{H-H} = 4 Hz, 1H, O<u>H</u>), 4.96 (m, 1H, CF₂-C<u>H</u>), 7.35– 7.60 (m, 9 H, aryl). ¹³C NMR (CDCl₃): δ 75.5 (t, ²*J*_{C-} F = 27.3 Hz, CF₂<u>C</u>H), 123.3 (aryl), 125.4 (aryl), 128.6 (t, ¹*J*_{C-F} = 285 Hz, CF₂), 129.1 (aryl), 129.4 (aryl), 130.0 (aryl), 131.5 (aryl), 134.0 (aryl), 136.4 (aryl). ¹⁹F NMR (CDCl₃): δ -81.6 (dd, ²*J*_{F-F} = 211 Hz, ³*J*_{F-H} = 7.3 Hz, 1F), -85.7 (dd, ²*J*_{F-F} = 211 Hz, ³*J*_{F-H} = 11.4 Hz, 1F). HRMS (EI): *m/z* calcd for C₁₄H₁₁BrF₂OS [*M*⁺] 343.9682, found 343.9681.

4.2.5. 1,1-Difluoro-1-phenylthio-4-phenyl-but-3-en-2-ol (**4e**)

Pale yellow liquid, 91% yield. ¹H NMR (CDCl₃): δ 3.13 (d, ³*J*_{H-H} = 5.4 Hz, 1H, O<u>H</u>), 4.59 (m, 1H, CF₂-C<u>H</u>), 6.26 (dd, ³*J*_{H-H} = 16.1 Hz, ³*J*_{H-H} = 6.3 Hz, 1H, PhCH = C<u>H</u>-CH), 6.77 (d, ³*J*_{H-H} = 16 Hz, 1H, PhCH = CH-CH), 7.31 (m, 8H, aryl), 7.60 (d, ³*J*_{H-H} = 7.8 Hz, 2H, aryl). ¹³C NMR

533

(CDCl₃): δ 75.0 (t, ${}^{2}J_{C-F} = 27$ Hz), 122.4 (-<u>C</u>H=CH–), 125.7 (t, ${}^{3}J_{C-F} = 2.5$ Hz, aryl), 126.8 (aryl), 128.3 (aryl), 128.5 (aryl), 128.9 (t, ${}^{1}J_{C-F} = 285$ Hz, CF₂), 129.0 (aryl), 129.8 (aryl), 135.1 (-CH=<u>C</u>H–), 135.7 (aryl), 136.4 (aryl). ¹⁹F NMR (CDCl₃): δ -83.0 (dd, ${}^{2}J_{F-F} = 207.6$ Hz, ${}^{3}J_{F-H} = 9.2$ Hz, 1F), -84.8 (dd, ${}^{2}J_{F-F} = 207.8$ Hz, ${}^{3}J_{F-H} = 8.9$ Hz, 1F). HRMS (EI): *m*/*z* calcd for C₁₆H₁₄F₂OS [*M*⁺] 292.0733, found 292.0728.

4.2.6. 2,2-Difluoro-2-phenylthio-1,1-diphenylethanol (4f)

White solid, 86% yield. ¹H NMR (CDCl₃): δ 3.16 (b, 1H, O<u>H</u>), 7.29–7.62 (m, 15H, aryl). ¹³C NMR (CDCl₃): δ 81.5 (t, ²*J*_{C-F} = 24 Hz, CF₂<u>C</u>–), 126.2 (t, ³*J*_{C-F} = 2 Hz, aryl), 127.7 (t, ³*J*_{C-F} = 2 Hz, aryl), 127.9 (aryl), 128.2 (aryl), 128.9 (aryl), 129.7 (aryl), 131.1 (t, ¹*J*_{C-F} = 293 Hz, CF₂), 136.6 (aryl), 140.2 (aryl). ¹⁹F NMR (CDCl₃): δ –77.9 (s). MS: 342 [*M*⁺], 213, 183, 165, 105, 77. HRMS (EI): *m/z* calcd for C₂₀H₁₆F₂OS [*M*⁺] 342.0890, found 342.0899.

4.2.7. 2,2-Difluoro-2-phenylthio-1-methyl-1-phenylethanol (*4g*)

Colorless liquid, 82% yield. ¹H NMR (CDCl₃): δ 1.83 (s, 3H, C<u>H</u>₃), 2.64 (b, 1H, OH), 7.32–7.68 (m, 10H, aryl). ¹³C NMR (CDCl₃): δ 24.5 (t, ³*J*_{C-F} = 2.4 Hz, CH₃), 77.9 (t, ²*J*_{C-} F = 24.4 Hz, CF₂C–), 126.1 (t, ³*J*_{C-F} = 2.2 Hz, aryl), 126.3 (aryl), 128.1 (aryl), 128.2 (aryl), 128.8 (aryl), 129.6 (aryl), 131.0 (t, ¹*J*_{C-F} = 290 Hz, <u>C</u>F₂), 136.5 (aryl), 140.0 (aryl). ¹⁹F NMR (CDCl₃): δ –82.1 (d, ²*J*_{F-F} = 204.5 Hz, 1F), –84.9 (d, ²*J*_{F-F} = 204.5 Hz, 1F). HRMS (EI): *m*/*z* calcd for C₁₅H₁₄F₂OS [*M*⁺] 280.0733, found 280.0727.

4.2.8. 1-Difluoro(phenylthio)methylcyclohexanol (4h)

Colorless liquid, 77% yield. ¹H NMR (CDCl₃): δ 1.19– 1.88 (m, 11H, 5CH₂ and 1CH), 7.34–7.63 (m, 5H, Ph). ¹³C NMR (CDCl₃): δ 20.8 (CH₂), 25.3 (CH₂), 31.0 (t, ³J_{C-} _F = 2.2 Hz, CF₂–C–<u>C</u>H₂), 75.9 (t, ²J_{C-F} = 23.3 Hz, CF₂–<u>C</u>), 126.2 (t, ³J_{C-F} = 2.4 Hz, aryl), 128.9 (aryl), 129.6 (aryl), 132.1 (aryl), 136.7 (aryl). ¹⁹F NMR (CDCl₃): δ –87.6 (s). HRMS (EI): *m*/*z* calcd for C₁₃H₁₆F₂OS [*M*⁺] 258.0890, found 258.0894.

4.3. Nucleophilic (phenylthio)difluoromethylation of diphenyl disulfide

Under an argon atmosphere, into a Schlenk flask containing diphenyl disulfide (218 mg, 1.0 mmol) and TMS–CF₂SPh (464 mg, 2.0 mmol) in dry THF (7 mL) at 0 °C, was added dropwise a THF solution (3 mL) of *t*-BuOK (336 mg, 3.0 mmol). Then the reaction mixture was stirred at 0 °C to room temperature for 2 h, followed by quenching with saturated NaCl aqueous solution (10 mL). The mixture was extracted with ether (15 mL × 3), and the combined organic phase was dried over MgSO₄. After the removal of volatile solvents, the residue was further purified by silica gel column chromatography (using hexane as eluent) to give PhSCF₂SPh (**6**) as a colorless liquid, yield: 227 mg (85%).

¹H NMR (CDCl₃): δ 7.33 (tt, J = 7.3 Hz, 2.0 Hz, 4H, aryl), 7.39 (tt, J = 7.3 Hz, 2.0 Hz, 2H, aryl), 7.58 (d, J = 8.0 Hz, 4H, aryl). ¹³C NMR (CDCl₃): δ 127.2 (t, ³ J_{C-F} = 14 Hz), 129.1 (aryl), 130.2 (aryl), 132.3 (t, ¹ J_{C-F} = 315 Hz), 136.1 (aryl). ¹⁹F NMR (CDCl₃): δ –49.5 (s). MS: 268 [M^+], 159, 109, 77.

4.4. Preparation of difluoromethylated alcohols (10) from (phenylthio)difluoromethylated alcohols (4)

Compound 4a (or 4b) (1 equiv.) was oxidized with 30% aqueous H_2O_2 (4 equiv.) in acetic acid at 50 °C overnight. After a standard workup, the neutralized crude product 9a (or 9b) was added into a mixture of Na(Hg) amalgam (5 wt.% Na in Hg, 5 equiv.) and MeOH at -20 °C, and the mixture was stirred at -20 °C to room temperature for 1 h. The liquid phase was decanted, and the solid residue was washed with ether for 3 times. After solvent removal of the combined organic phase, the residue was purified by silica gel column chromatography (hexane/ethyl acetate (v/ v = 5:1) to give product **10a** (or **10b**) in 49 and 53% yield, respectively. The characterization data of 10a are consistent with the previous report [10]. For product 10b: ¹H NMR (CDCl₃): δ 2.99 (b, 1H, OH), 4.98 (m, 1H, CF₂CH), 5.86 (td, J = 56 Hz, 4.7 Hz, 1H, CF₂H), 7.50 (m, 3H, aryl), 7.87 (m, 4H, aryl). ¹³C NMR (CDCl₃): δ 73.7 (t, ² J_{C-F} = 24.6 Hz, CF₂CH), 115.8 (t, ${}^{1}J_{C-F}$ = 246 Hz, CF₂), 124.3 (aryl), 126.4 (aryl), 126.5 (aryl), 126.6 (aryl), 127.7 (aryl), 128.1 (aryl), 128.4 (aryl), 133.0 (aryl), 133.2 (t, ${}^{3}J_{C-F} = 3.5$ Hz, aryl), 133.5 (aryl). ¹⁹F NMR (CDCl₃): δ -127.4 (ddd, ²J_{F-F} = 284 Hz, ²J_{F-H} = 56 Hz, ³J_{F-H} = 9 Hz, 1F, C<u>F</u>₂H), -128.0 (ddd, ²J_{F-F} = 284 Hz, ²J_{F-H} = 56 Hz, ³J_{F-F} _H = 10 Hz, 1F, C<u>F</u>₂H). MS: 208 [M^+].

Acknowledgement

Support of our work by the Loker Hydrocarbon Research Institute is gratefully acknowledged.

References

- C.R. Burkholder, W.R. Dolbier Jr., M. Medebielle, J. Fluorine Chem. 102 (2000) 369–376.
- [2] C. Burkholder, W.R. Dolbier Jr., M. Medebielle, S. Ait-Mohand, Tetrahedron Lett. 42 (2001) 3459–3462.
- [3] G.K.S. Prakash, R. Krishnamurti, G.A. Olah, J. Am. Chem. Soc. 111 (1989) 393–395.
- [4] R. Krishnamurti, D.R. Bellew, G.K.S. Prakash, J. Org. Chem. 56 (1991) 984–989.
- [5] G.K.S. Prakash, A.K. Yudin, Chem. Rev. 97 (1997) 757–786;
 G.K.S. Prakash, M. Mandal, J. Fluorine Chem. 112 (2001) 123–131;
 G.K.S. Prakash, J. Hu, New Fluoroalkylation Chemistry, in: V. Soloshonok (Ed.), Fluorinated Synthons, ACS Symposium Series, 2005.
- [6] A.K. Yudin, G.K.S. Prakash, D. Deffieux, M. Bradley, R. Bau, G.A. Olah, J. Am. Chem. Soc. 119 (1997) 1572–1581.

- [7] G.K.S. Prakash, J. Hu, G.A. Olah, J. Org. Chem. 68 (2003) 4457– 4463.
- [8] X.-Y. Li, X. Jiang, Y. Gong, H. Pan, HuaXue XueBao 43 (1985) 260– 265.
- [9] P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity Applications, Wiley-VCH, Weinheim, 2004.
- [10] S. Kaneko, T. Yamazaki, T. Katazume, J. Org. Chem. 58 (1993) 2302– 2312.